首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 778 毫秒
1.
Recent angle resolved photoemission (ARPES) measurements for the insulating cuprate Sr2CuO2Cl2 have provided the first experimental data which can be directly compared to the (theoretically) well-studied problem of a single hole propagating in an antiferromagnet. Some discrepancies withthe familiar 2D t— J model were observed. Here we discuss a comparison between the ARPES results and the quasiparticle dispersion of both (i) the extended t— t— J Hamiltonian and (ii) the three-band Hubbard model.  相似文献   

2.
Recent experimental results by us have indicated that the load-drop technique can serve as a valid fracture criterion for predicting elastic-plastic fracture in extra deep drawn (EDD) steel sheets or in predominantly plane stress conditions. The purpose of this investigation is to examine the validity of aJ-integral as a fracture parameter and theJ-CTOD relation for the determination of critical CTOD in predominantly plane stress fracture (CTOD-crack tip opening displacement). Fracture tests were performed and experimental results were generated on fracture behaviour of EDD (0·06%C) steel sheets with CT specimens and using ‘load-drop’ as a fracture criterion. Critical CTOD was determined by using theJ-CTOD relation in addition to several existing techniques. A full 3-D finite element model was formulated to verify the critical load, critical CTOD and plastic-zone size. The critical CTOD was shown to increase with increasing specimen thickness and appeared to be approaching a higher limiting value. The characteristic features of predominantly plane stress fracture or general yielding fracture mechanics are summarized in conclusion  相似文献   

3.
The purpose of this paper was to investigate the influence of fatigue on the fracture strength of In ceram, optimal pressable ceramic (OPCTM) and IPS Empress in both wet and dry environments. Twenty-six crown shapes 8 mm in diameter and 8.5 mm in height were fabricated for each ceramic system. For each ceramic system, ten specimens were tested for fracture strength without fatiguing. The second group was submitted to a fatigue and fracture test in a dry (eight specimens) and a third group in a wet (eight specimens) environment using an Instron testing machine. The results were statistically analysed using a Mann–Whitney test. The results indicated that: (i) the fracture strength for In ceram was significantly stronger than OPCTM and IPS Empress (p<0.05) – no difference was found between OPCTM and IPS Empress; (ii) fatiguing and fracture testing showed a significant decrease in the fracture strength for In ceram and IPS Empress in the wet environment and no difference was found in the dry environment – no difference was found for OPCTM; and (iii) when fatigued in a dry environment, In ceram crown shapes were significantly stronger than OPCTM and IPS Empress (p<0.05) – the same statistical differences were found when fatigued in a wet environment.  相似文献   

4.
5.
CFD analysis of ejector in a combined ejector cooling system   总被引:6,自引:1,他引:5  
One-dimensional ejector analyses often use coefficients derived from experimental data for a set of operating conditions with limited functionality. In this study, several ejector designs were modelled using finite volume CFD techniques to resolve the flow dynamics in the ejectors. The CFD results were validated with available experimental data. Flow field analyses and predictions of ejector performance outside the experimental range were also carried out. During validation, data from CFD predicted the entrainment ratios with greater accuracy on definite area ratios, although no shock was recorded in the ejector. Predictions outside the experimental range—at operating conditions in a combined ejector–vapour compression system—and flow conditions resulting from ejector geometry variations are discussed. It is found that the maximum entrainment ratio happens in the ejector just before a shock occurs and that the position of the nozzle is an important ejector design parameter.  相似文献   

6.
A series of three-point bend tests using single edge notched testpieces of pure polycrystalline ice have been performed at three different temperatures (–20°C, –30°C and –40°C). The displacement rate was varied from 1 mm/min to 100 mm/min, producing the crack tip strain rates from about 10–3 to 10–1 s–1. The results show that (a) the fracture toughness of pure polycrystalline ice given by the critical stress intensity factor (K IC) is much lower than that measured from the J—integral under identical conditions; (b) from the determination of K IC, the fracture toughness of pure polycrystalline ice decreases with increasing strain rate and there is good power law relationship between them; (c) from the measurement of the J—integral, a different tendency was appeared: when the crack tip strain rate exceeds a critical value of 6 × 10–3 s–1, the fracture toughness is almost constant but when the crack tip strain rate is less than this value, the fracture toughness increases with decreasing crack tip strain rate. Re-examination of the mechanisms of rate-dependent fracture toughness of pure polycrystalline ice shows that the effect of strain rate is related not only to the blunting of crack tips due to plasticity, creep and stress relaxation but also to the nucleation and growth of microcracks in the specimen.  相似文献   

7.
Fracture toughness of the nano-particle reinforced epoxy composite   总被引:2,自引:0,他引:2  
Although thermoset polymers have been widely used for engineering components, adhesives and matrix for fiber-reinforced composites due to their good mechanical properties compared to those of thermoplastic polymers, they are usually brittle and vulnerable to crack. Therefore, ductile materials such as micro-sized rubber or nylon particles are added to thermoset polymers are used to increase their fracture toughness, which might decrease their strength if micro-sized particles act like defects.In this work, in order to improve the fracture toughness of epoxy adhesive, nano-particle additives such as carbon black and nanoclay were mixed with epoxy resin. The fracture toughness was measured using the single edge notched bend specimen at the room (25 °C) and cryogenic temperature (−150 °C). From the experimental results, it was found that reinforcement with nano-particles improved the fracture toughness at the room temperature, but decreased the fracture toughness at the cryogenic temperature in spite of their toughening effect.  相似文献   

8.
This paper presents an experimental study on the performance of hydrocarbon refrigerants, namely propane and a liquefied petroleum gas (LPG) mix as suitable replacements for the widely used refrigerant HCFC22 in refrigeration and heat pump applications. A cylinder of commercially available LPG from New Zealand market was obtained for this study. The composition of the specific LPG mix (by mass fraction) was propane (HC290)—98.95%, ethane (HC170)—1.007%, iso-butane (HC600a)—0.0397% and other constituents in small proportions. Experiments were carried out in a laboratory heat pump test facility with maximum condenser capacity of approximately 15 kW. Condensing temperatures were held constant at 35, 45 and 55°C, while evaporating temperatures were varied over a wide range from − 15 to + 15°C. All tests were carried out at constant degree of superheat (about 1 K) and subcooling (about 8 K). All appropriate precautions were observed against any leaks or fire.The analysis revealed that the hydrocarbon refrigerants performed better than HCFC22 but with a small loss of condenser capacity. The mass flow rate and compressor discharge temperature were found to be significantly lower than HCFC22. The performance of the specific LPG mix tested was found to be better than HC290 at higher condensing temperatures but poorer at a lower condensing temperature. No adverse effects were found with the LPG mix despite the presence of little moisture (less than 0.01%) in its composition. The study reveals that LPG of the tested composition (i.e. predominantly a mixture of propane, ethane and iso-butane) can be an excellent refrigerant in heat pump/refrigeration applications.  相似文献   

9.
Fatigue experiments were carried out in laboratory air using an extruded magnesium alloy, AZ31, to investigate the effect of load ratio on the fatigue life and crack propagation behavior. The crack propagation behavior was analyzed using a modified linear elastic fracture mechanics parameter, M. The relation crack propagation rate vs. M parameter was found to be useful in predicting fatigue lives at different R ratios. Good agreement between the estimated and the experimental results at each stress ratio was obtained.  相似文献   

10.
At low temperatures and high loading rates, normally tough crystalline thermoplastics may undergo a transition from ductile tearing to brittle rapid crack propagation (RCP). It is proposed here that RCP — characterised by low toughness, high crack speed (>100 m/s) and a macroscopically smooth fracture surface — occurs by self-sustained melting of a layer, one chain length thick, at each cohesive surface of a crack-tip craze, due to adiabatic heating. Initiation of RCP from a rapidly loaded sharp notch, i.e. impact fracture, requires both the formation of this melt layer, and sufficient crack extension force to propagate it. A schematic linear-elastic analysis based on the Dugdale model accounts both for the measured dynamic fracture resistance, and for the variation of impact fracture resistance with impact speed, in two pipe-grade polyethylenes and in a neat and a rubber-toughened polyacetal. It is concluded that crack initiation resistance, unlike dynamic fracture resistance, cannot be defined as a geometry-dependent material property.  相似文献   

11.
12.
Results are presented of the fracture tests of ice/metal interfaces in an attempt to utilize fracture mechanics to characterize the failure of ice/solid adhesion. The four-point bending delamination specimen was used to measure the fracture energy of ice/aluminium and ice/steel joints at — 15 °C. The interfacial fracture energy was found to be dependent on ice type and formation procedure of the ice/metal composites. Crack growth was in a manner of asymmetrical bursting, and both cohesive and adhesive failure mechanisms were observed. Although the fracture of ice/metal interfaces was brittle in nature, the evidence of dislocation slip in ice crystals, as revealed by etching and replicating, suggests that microplastic deformations occur in the ice component.  相似文献   

13.
This paper presents an experimental study on cyclic fatigue of two polymer nanocomposites in two common failure modes: mechanical failure in epoxy nanocomposites and thermal softening in polyamide (PA, nylon) 6 nanocomposites. For epoxy nanocomposites, the effects of hard (silica) and soft (rubber) nano-particles on un-notched samples under constant cyclic stress amplitude fatigue were studied. Hard particles were shown to increase but soft particles decrease the fatigue life of nanocomposites compared to unmodified epoxy. At the same stress amplitude, the extent of fatigue crack growth prior to fast fracture was largest in rubber nanocomposites and least in pure epoxy, reflecting the differences in their fracture toughness values. Ternary nanocomposites with both hard and soft (silica and rubber) particles were also investigated and their fatigue performances were compared to the binary nanocomposites. Further, the stress (σa) versus life (Nr) test data of pure epoxy and its binary and ternary nanocomposites are well described by Basquin’s law.PA6 nanocomposites exhibited fatigue failure due to thermal softening when the maximum local temperature of the specimens subjected to cyclic loading reached the glass transition temperature, Tg, of the material. Critical stress (σa) versus frequency (ω) envelopes for design against thermal failure were obtained for PA6/organoclay, PA6/POE-g-MA and PA6/pristine clay. Experimental results compared favorably with theoretical predictions.  相似文献   

14.
This paper deals with the identification of concrete fracture parameters through indirect methods based on size effect experiments. These methods utilize the size effect curve (structural strength versus structural size), associated with a certain specimen geometry, to identify the tensile strength and the initial fracture energy. These two parameters, in turn, are typically used to characterize the peak and the initial post-peak slope of the cohesive crack law. In the literature, two different approaches can be found for the calculation of the size effect curve: (a) an approach based on the polynomial interpolation of numerically calculated structural strengths of geometrically similar specimens of different sizes, and (b) the classical approach based on equivalent elastic fracture mechanics, which gives rise to the well-known Bažant’s size effect law (SEL). In this paper, the two approaches are first reviewed, the relationship between them is investigated, and a new procedure to identify the tensile strength using the SEL is proposed. Then several sets of experimental results, recently performed at the Politecnico di Milano, are analyzed with both approaches in order to assess their range of applicability and accuracy in the identification of the two fracture parameters specified above.  相似文献   

15.
Summary The behavior of two-dimensional woven SiC/SiC ceramic matrix composite (CMC) is studied by numerical simulations based on the finite element method (FEM). Starting point of the investigations is a micromechanical model regarding a three-dimensional unit cell, which takes damage and fracture of the single components—fiber bundles and inter yarn matrix—into account. The scattering of the strength values which is characteristic for ceramic material is involved using Weibull distribution. In a first step the unit cell regarded within the simulations is cooled down to consider the residual thermal stresses resulting from the fabrication process. In a second step the unit cell is subjected to tensile loading and its behavior—especially the influence of the scattering of the strength values—is studied. To be able to estimate the influence of important parameters on the behavior of the composite a macrostructure is built up using the results obtained for a large number of unit cell. Thus an averaging effect is reached and the behavior obtained for the macrostructure should be characteristic for the composite. Doing so, the influence of the fiber volume fractionv f and the fiber Weibull modulM f on the composite behavior can be studied.Dedicated to Prof. Dr.-Ing. Dr.-Ing. E. h. mult. Oskar Mahrenholtz on the occasion of his 70th birthday  相似文献   

16.
The aim of the present numerical study was to predict the structural failure of airbag inflators undergoing destructive bust tests, while accounting for the thermomechanical history of the constitutive material. For this purpose, the material was previously characterized under tension, compression, torsion and shear loading conditions at various strain rates. It was found to be elastic–viscoplastic and prone to ductile fracture. The behaviour of the material was then modelled using the Gurson–Tvergaard–Needleman (GTN) approach, and the material constants were identified via the gradient-based inverse method. The observed and predicted locations of the damage induced by void growth during the crimping process showed good agreement. In addition, the numerical simulations of the destructive testing phase (involving dynamic internal pressure loading) yielded a Mode I-like failure process, as observed experimentally. The burst pressure value predicted was found to be very similar to the experimental value, which confirms that the conservative method presented here could be usefully applied to industrial situations.  相似文献   

17.
The fracture toughness and behaviour of COMRAL-85TM, a 6061 aluminium–magnesium–silicon alloy reinforced with 20 vol% Al2O3-based polycrystalline ceramic microspheres, and manufactured by a liquid metallurgy route, have been investigated. Fracture toughness tests were performed using short rod and short bar (chevron-notch) specimens machined from extruded 19 mm diameter rod, heat treated to the T6 condition. The fracture toughness in the R–L orientation was found to be lower than in the C–R or L–R orientations owing to the presence of particle-free bands in the extrusion direction. Short rod tests were also conducted for the R–L orientation on six powder metallurgy composites with particle volume fractions ranging between 5% and 30%. It was found that the fracture toughness decreased progressively with particle volume fraction, but at a decreasing rate. A detailed examination of the fracture behaviour was made for both the liquid metallurgy and powder metallurgy processed composites.  相似文献   

18.
The effect of thermal exposure on grain-boundary precipitation in Al–Cu–Mg–Ag alloy was studied using quantitative transmission electron microscopy. Grain-boundary precipitate parameters, such as average size, number density and precipitate-free zone width, were measured. The effective diameter of precipitates, number of precipitates per grain-boundary area and area fraction of precipitates on the grain boundary were calculated. These data were applied to a grain-boundary fracture model to calculate grain-boundary fracture strain. The calculated fracture strains, in turn, were used to check the validity of two existing models of fracture toughness, which are based on grain-boundary nucleation of cracks and their propagation through precipitate-free zones. The fracture toughness model of Hornbogen and Graf closely agrees with the experimental results.  相似文献   

19.
A series of fracture toughness experiments were carried out involving sub-zero-chilled (using liquid nitrogen) cast iron containing 1.5% Cu, and chromium contents ranging from 0.0%–0.2%. By using copper chills of different thicknesses, the effect on fracture toughness of varying the chill rate was also examined. The fracture toughness tests were carried out using three-point bend specimens, each with a chevron notch, as per ASTM E 399-1974 standards. It was found that fracture toughness is highly dependent on the location on the casting from where the test specimens are taken and also on the chromium content of the material. Chill thickness, however, does not significantly affect the fracture toughness of the material. There was found to be an approximately linear relationship between fracture toughness and pearlite content, in which fracture toughness increases as pearlite content decreases and vice versa.  相似文献   

20.
Notched tensile tests have been carried out on three common metals (pure iron, mild steel and aluminium alloy BS1474) over a wide range of strain-rates (10–3 to 104 s–1) and the strain-to-failure measured. The ductility of all three materials was found to be strongly dependent on the level of stress triaxiality in the specimen, this dependency being greatest for the ferrous materials and least for the aluminium alloy. No significant effect of strain-rate could be ascertained from the experimental results provided fracture remained fully ductile. However, for mild steel, a transition to a brittle fracture mode was observed for a given level of stress triaxiality as the strain-rate was increased. Numerical simulations of the experiments have been used to derive constants of a semi-empirical fracture model from the measured results. This model was found to give reasonable predictions of fracture over the range of conditions investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号