首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 644 毫秒
1.
The effects of the chemical refining process on the minor compounds of rice bran oil and its heat stability were investigated. After 8 h of heating, about 50% and 30% of total tocopherols remained in crude and refined rice bran oil, respectively. The individual tocopherols were differently affected by the refining process. The order of heat stability of tocopherols and tocotrienols in crude oil was found to be different from that in fully refined oil. A similar tendency was observed for sterols. After 8 h of heating, 65% and 72% of total sterols, and 14% and 46% of sterol esters, of crude or fully refined rice bran oil, respectively, disappeared. The heating process led to a 4% and 10.3% increase in polymer contents in crude and refined rice bran oil, respectively. Although refined rice bran oil showed good heat stability, when compared to crude oil its heat stability was decreased to some extent.  相似文献   

2.
The effect of the industrial chemical refining process on the physicochemical properties, fatty acid composition, and bioactive minor components of peanut oil was studied. The results showed that the moisture and volatile matter content, acid value, peroxide value, and p‐anisidine value were significantly changed (P < 0.05) after the complete refining process. No significant variation (P > 0.05) in the iodine value was observed among all the peanut oil samples. Similar changes were observed in the DPPH radical scavenging activity and the total tocol content during chemical refining. In addition, chemical refining did not have much effect on the fatty acid composition, except for certain changes of several individual fatty acids. Moreover, the chemical refining resulted in 23.6, 23.1, and 9.5 % losses of squalene, total phytosterols, and total tocols (α, β, γ, δ‐tocopherols and α, β, γ, δ‐tocotrienols), respectively. The degumming–neutralization step caused the greatest overall reduction of these bioactive minor components. However, the concentrations of α‐tocotrienol and γ‐tocotrienol increased after full refining. Furthermore, chemical refining slightly changed the relative proportions of individual phytosterols and individual tocols.  相似文献   

3.
Post Deodorization Condensates from Soya and Rape Oils as a Source of Tocopherols For refining of different kinds of plant oils the same industrial installations are used. The qualitative and quantitative composition of tocochromanols obtained from post deodorization condensates depends on the refined oil. The influence of the quantity of refined oils in the process on quantitative changes of tocopherols in the condensates was investigated. We found, that for the eventual obtaining of tocopherol concentrates from them, it is better to use soya post deodorization condensate. The maximum concentration of tocopherols in soya condensate was found after deodorization of approximately 26 tons of the oils at an installation yield of about 3.5 tons per hour.  相似文献   

4.
The minimal refining method described in the present study made it possible to neutralize crude canola oil with Ca(OH)2, MgO, and Na2SiO3 as alternatives to NaOH. After citric acid degumming, about 98 % of the phosphorous content was removed from crude oil. The free fatty acid content after minimal neutralization with Ca(OH)2 decreased from 0.50 to 0.03 %. Other quality parameters, such as peroxide value, anisidine value, and chlorophyll content, after traditional and minimal neutralization were within industrial acceptable levels. The use of Trisyl silica and Magnesol R60 made it feasible to remove the hot-water washing step and decreased the amount of residual soap to <10 mg/kg oil. There were no significant changes in chemical characteristics of canola oil after using wet and dry bleaching methods. During traditional neutralization, the total tocopherol loss was 19.6 %, while minimal refining with Ca(OH)2, MgO, and Na2SiO3 resulted in 7.0, 2.6, and 0.9 % reductions in total tocopherols. Traditional refining removed 23.6 % of total free sterols, while after minimal refining free sterols content did not change. Both traditional and minimal refining resulted in almost complete removal of polyphenols from canola oil. Total phytosterols and tocopherols in two cold-pressed canola oils were 774 and 836 mg/100 g, and 366 and 354 mg/kg, respectively. The minimal refining method described in the present study was a new practical approach to remove undesirable components from crude canola oil meeting commercial refining standards while preserving more healthy minor components.  相似文献   

5.
Minor compounds such as tocopherols and phytosterols in vegetable oils play an important role in their stability and nutritional value. This study monitored the effects of chemical interesterification on the levels of tocopherols, tocotrienols, phytosterols and phytosterol oxidation products (POPs) in an olive oil and palm stearin blend (50/50 w/w). Tocopherols and tocotrienols were dominated by α-tocopherol (192 ppm) and γ-tocotrienol (70 ppm) and decreased during interesterification. Among the tocopherols, δ-tocotrienol had the highest decrease (35%) at 120 °C. During interesterification at 90 and 120 °C, total sterol content in the oil blend (509 ppm) declined slightly, by 3 and 5%, respectively. Phytosterols were esterified at a higher level at 120 °C (7%) than at 90 °C (4%) during this process. Distribution of fatty acids in the esterified sterols followed the fatty acid composition of the oil blend. Total POP content was 4.3 ppm, and remained generally unchanged during interesterification. Among the nine POPs tentatively identified by their mass spectra, 6-hydroxysitostanol and 6-hydroxycampestanol dominated in the oil blend and in the interesterified product. The formation pathways of these saturated di-hydroxyphytosterols have yet to be identified. Although the interesterification process comprised several treatments, there were only minor losses of tocopherols and phytosterols and virtually no increases in the POPs.  相似文献   

6.
Crude rice bran oil (RBO) is rich in valuable minor components such as tocotrienols, phytosterols and γ-oryzanol. These compounds are well preserved during physical refining, but in current industrial practice, RBO is mostly refined chemically because this results in a lighter color. However this process removes most of the γ-oryzanol. The challenge is to develop a refining process which combines a high γ-oryzanol retention with the commercially desired light color. A modified physical refining process was developed, consisting of an acid degumming, prebleaching, dewaxing, physical removal of free fatty acids using packed column technology, a modified washing step, conventional bleaching and deodorization. A RBO with acceptable oryzanol retention of 39% had a Lovibond red color value (measured with a 5.25-inch cell) of 2.8, approaching very close the color of a chemically refined RBO (red = 2). At the process step where high (94%) retention of γ-oryzanol was achieved, a somewhat darker Lovibond red value of 5.2 was obtained.  相似文献   

7.
Originally, oils were not refined but with the introduction of solvent extraction, refining became necessary. Crude cottonseed oil was refined by treating the oil with caustic soda and the same process was used for all other oils that needed refining. The subsequent introduction of centrifugal separators converted the original batch process into a continuous process. Degumming was introduced to obtain lecithin but limited to soya bean oil. Physical refining was introduced for high acidity oils like palm oil after the oil had been degummed to low residual phosphorus levels in the dry degumming process, in which the oil is first of all treated with an acid and then with bleaching earth. In Europe, further degumming processes were developed that allowed seed oil to be physically refined and later phospholipase enzymes were introduced to reduce oil retention by the gums and improve oil yield. Given these various oil purification processes, the refiner must decide which process to use for which oil in which circumstances. The paper provides a survey of what to do and when. It also discusses several topics that require further investigation and development.  相似文献   

8.
Crude oils obtained by oilseed processing have to be refined before the consumption in order to remove undesirable accompanying substances. The traditional alkali refining is often replaced by physical refining in which the use of chemicals is reduced. The most widely used method is steam refining. The crude oil quality is very important in order to obtain high quality refined oil. Furthermore, the oil should be efficiently degummed to remove phospholipids as well as heavy metals and bleached to remove pigments. The most important step consists of the application of superheated steam under low pressure and at temperatures higher than 220 °C. Both free fatty acids and objectionable volatiles, formed by cleavage of lipid oxidation products, are removed. A disadvantage is the partial loss of tocopherols. Side reactions, particularly isomerization of polyunsaturated fatty acids, should be minimized. The quality of physically refined oil is close to that of alkali refined oils, but losses of neutral oil are lower and the environment is less polluted. Among other methods of physical refining the application of selective membranes is promising.  相似文献   

9.
By using a preliminary heat-bleach at 250 C the Emmerie-Engel method has been adapted for the determination of total tocopherols (including tocotrienols) in crude as well as refined palm oil, olein and stearin. Total tocopherol contents found were: Crude palm oil, 794 ppm (n=10); RBD palm oil, 563 ppm (n=13); RBD palm olein, 643 ppm (n=40); RBD palm stearin, 261 ppm (n=19), where n is the number of samples analyzed. During the detergent fractionation no tocopherols were lost, but the tocopherols were concentrated in the olein fraction. The fate of the tocopherols during degumming, bleaching and steam refining/deodorizing of Crude palm olein containing 978 ppm total tocopherol was studied. Over the whole refining process only 8% of the tocopherols were lost, 62% of the original tocopherols were retained in the RBD palm olein, while the remaining 30% were concentrated in the fatty acid distillate which contained 7,040 ppm tocopherol.  相似文献   

10.
The effect of the full refining process on the stability of rice bran oil during storage at room temperature was studied. Crude and refined rice bran oil were kept in the dark and were exposed to light for 240 days, and every 10 days samples were drawn and analysed. The storage stability of crude and fully refined rice bran oil was determined and compared with respect to fatty acid composition, tocopherols, tocotrienols, sterols and γ‐oryzanol content. In addition, the oxidative status was evaluated by determining the concentration of polar compounds and the oil stability index (OSI). A good correlation between the decrease of total tocopherols and the OSI was found. α‐Tocopherol had the highest correlation coefficient (r2 = 0.9653) in crude rice bran oil kept in the dark, and γ‐tocopherol showed the lowest in the refined sample (r2 = 0.4722). The order of stability of tocopherols and tocotrienols in crude oil was completely different from that in refined oil. In comparison to tocopherols, sterols showed a better stability during the entire storage period. The exposure to daylight heavily affected the composition and the stability of both crude and refined rice bran oil.  相似文献   

11.
Minor constituents of vegetable oils during industrial processing   总被引:6,自引:10,他引:6  
We report the effects of individual steps of industrial refining, carried out in Brazil, on the alteration of selected minor constituents of oils, such as corn, soybean, and rapeseed oils. Total sterols, determined by capillary gas chromatography (GC), decreased by 18–36% in the fully refined oils, compared with the crude oils. The total steradienes, dehydration products of sterols, were determinedvia a simple clean-up on a short silica gel column, followed by high-performance liquid chromatography (HPLC) with ultraviolet detection. The level of steradienes, normally not present in crude oils, increased after each refining step, especially after deodorization. Thus, the content of steradienes increased after deodorization by about 15- to 20-fold in corn and soybean oils, and by about 2-fold in rapeseed oil. The total steryl esters were also determinedvia clean-up on a short silica gel column, followed by HPLC with evaporative light scattering mass detection. A minor decrease in the level of steryl esters was observed after complete refining. The individual tocopherols and tocotrienols were determined by HPLC with a fluorescence detector. The level of total tocopherols and tocotrienols decreased by about 2-fold after complete refining of corn oil and by about 1.5-fold in soybean and rapeseed oils. In all three cases, maximum reduction of tocopherols was observed after the deodorization step. The level of polymeric glycerides, determinedvia clean-up on a short silica gel column followed by size-exclusion HPLC, increased to some extent (0.4–1%) during refining. The level oftrans fatty acids, determined by capillary GC, also increased to a substantial extent (1–4%) after refining. Part of doctoral thesis of Roseli Ap. Ferrari to be submitted to Faculdade de Engenharia de Alimentos, Universidade de Campinas, Campinas, Brazil.  相似文献   

12.
Relations Between Fat Oxidation and Antioxidative Additives in Mixed Feeding Stuff Storage experiments with various mixtures of feeding stuffs were carried out. The influence of single factors on fat stability in test mixtures should be tested. The type of fat (refined soya bean oil, free fatty acids from soya bean oil raffination) fat content (3, 6, 9%), antioxidants (BHA, TBHQ), amount of anti oxidants (0 - 50 - 100 - 150 mg/kg feeding stuff), storage temperature (4, 14, 24°C) and storage period (6 - 12 - 24 weeks) were varied. The peroxide value (POZ) and the remaining amounts of antioxidants were used as parameters for the determination of the fat oxidation. The test results showed a some what enlarged stability of the fatty acids of soya bean oil raffination compared with refined soya bean oil in presence of anti oxidants. The stabilising effect of TBHQ was higher than that of BHA, but the consumption of antioxidants was lower with BHA than with TBHQ. With increasing amounts of antioxidants the stability of the fat was enlarged. The stability was lowered with rising storage temperature. Increasing storage period gives rise to a considerable increase in oxidation.  相似文献   

13.
Changes of rapeseed and linseed oil during processing During processing of crude oil in a large oil mill, three samples each of rapeseed and linseed were investigated at each processing stage, i.e. press oil, solvent-extracted oil, mixed oil, and degummed/caustic refined oil. In the case of rapeseed also bleached and desodorized oils (230°C; 3.0 mbar for 2 h) were investigated. Rapeseed and linseed oil showing the typical major fatty acids contained less than 1% trans-isomeric fatty acids (trans fatty acids = TFA). Linseed oil had a similar TFA-concentration as rapeseed oil, and the concentrations did not change during the processing stages up to degummed/caustic refined oil, and were also unchanged in the bleached rapeseed oil. Desodorization of rapeseed oil, however, trebled the TFA concentration to 0.58%. The detected tocopherol patterns were typical of rapeseed and linseed oils. There was no difference between mixed oil and degummed/caustic refined oil in the total concentration of tocopherols. Neither had bleaching any effect. Rapeseed oil desodorization diminished total tocopherol concentration by 12% from 740 mg/kg to 650 mg/kg. Due to degumming/caustic refining the phosphorus concentration of both oils decreased to less than a tenth compared to mixed oil. Other elements determined in degummed/caustic refined rapeseed oil were not detectable (manganese < 0.02 mg/kg, iron < 0.4 mg/kg, copper < 0.02 mg/kg, lead < 10 μg/kg) or only as traces zink 0.1 mg/kg, cadmium 2 μg/kg). In linseed oil, which initially showed a higher trace compounds concentration, a significant decrease was found by degumming/caustic refining. Iron could not be detected. There were traces of zinc, manganese, copper, lead, and cadmium. There was no difference between the acid values of rapeseed and linseed crude oil. Acid value decreased drastically already during the degumming/caustic refining stage. The crude linseed oils had a higher peroxide value, anisidine value and diene value than the corresponding crude rapeseed oils. With peroxide values of ≤ 0.1 mEq O2/kg found in almost all investigated rapeseed oils, no effect of refining could be detected. The anisidine value showed an increase after bleaching. Desodorization trebled the diene value.  相似文献   

14.
The deodoriser distillate (DOD) of Indian soybean oil obtained from two industries processing soybean oil was investigated for its physicochemical characteristics, its composition of tocopherols, phytosterols, fatty acids and recovery of phytosterols for use in nutraceutical products. It was found that the two DOD samples studied were dark in color and had higher amounts of free fatty acids (22.7 and 49.9%), unsaponifiable matter (11.8 and 21.9%) (5–10 times found in soybean oil), total tocopherols (1957–2256 mg/100 g) (20 times the amount in soybean oil), and 6–10% of phytosterols (12–20 times the soybean oil). The fatty acids found were palmitic (23.2–25.5%), stearic (1.4–2.4%), oleic (23.8–26.1%), linoleic (40.4–41.1%) and linolenic (2.7–3.2%) acids. The unsaponifiable matter (21.9%) and phytosterols (8.7%) content of DOD-2 were higher than in DOD-1 and hence was more suited for isolation of phytosterols. Using hexane and water for crystallisation, the DOD-2 yielded a phytosterol fraction with lower recovery of 13.2–17.8% while treatment with alkali to remove FFA and the glycerides followed by organic solvent extraction yielded unsaponifiable matter containing phytosterols with a recovery of 74.6%. Later the unsaponifiable matter was purified by double crystallisation into a mixture of phytosterols of 87% purity containing β-sitosterol (34.3%), stigmasterol (3.1%) and campesterol (50.1%). The product may find use in foods, pharmaceuticals, cosmetics and allied industries probably as a nutraceutical.  相似文献   

15.
Investigations of Fat Utilization of the Rainbow Trout (Salmo gairdnerii, R.) I: Use of Raw and Refined Soya Bean Oil in Comparison to Refined Sunflower Oil in a Synthetic Feed Mixture Three vegetable oils (raw soya bean oil, refined soya bean oil and refined sunflower oil) were used as fat components in a synthetic feed mixture (standard diet. These three proved utilization figures of 0.08 and better as well as PER-values of more than 2.50 on an average could be achieved. Between raw and refined soya bean oil no differences were found, whereas sunflower oil showed a somewhat worse utilization.  相似文献   

16.
By definition, virgin olive oil is consumed unrefined, although a great proportion of the olive oil produced has to be refined to render it edible. Phenolic compounds are among the substances eliminated during the refining process; in the present work these were characterized by HPLC, and their evolution during the different refining steps was studied. The complete refining process removed most polyphenols from oils, but the behavior of individual compounds at each step also was observed. o-Diphenols (hydroxytyrosol, catechol, and hydroxytyrosol acetate) and flavonoids (luteolin and apigenin) were eliminated first during the alkaline treatment. Tyrosol and 4-ethylphenol remained in the oil until the deodorization step. A large amount of phenolic compounds was discovered in the refining by-products such as soapstocks and deodorization distillates. In the latter streams, the concentrations of tyrosol and 4-ethylphenol reached up to 149 and 3720 mg/kg by-product, respectively. This high level of 4-ethylphenol and its well-known strong off-odor can interfere during further processing of the deodorization distillates, and this must be taken into account when deciding what is to become of them. Similarly, the results of this work open the possibility of recovering phenolic compounds from the “second centrifugation olive oils” by adding a new washing step prior to the refining process. By including this new step, the most polar polyphenols, hydroxytyrosol and tyrosol, will diffuse from oil to water and a concentration of up to 1400 mg/L of hydroxytyrosol may be achieved.  相似文献   

17.
The fate of major and minor components of soybean oil is examined at each stage of processing. Relationships are then drawn upon the effect on the quality of finished oil. General topics covered are (a) triglycerides and polyunsaturated fatty acids, (b) free fatty acids, (c) mono- and diglycerides, (d) phospholipids, (e) minor constituents, such as tocopherols, color bodies, and metal ions, (f) rearrangement and decomposition products, (g) foreign or toxic compounds not native to soya and (h) other additives, such as refining aids.  相似文献   

18.
Seeds from 12 Acacia cyanophylla ecotypes, harvested in Tunisia, were examined for their seed oil contents of carotenoids, tocopherols and phytosterols. The average carotenoid content (lutein and zeaxanthin) was ca. 102 mg kg?1 of total extracted lipids. Lutein (ca. 97 mg kg?1 of total extracted lipids) was usually more abundant than zeaxanthin (ca. 5 mg kg?1 of total extracted lipids). The mean total tocopherol content was ca. 704 mg kg?1 of total extracted lipids. The main isomer was α‐tocopherol, with more than 75 % of total tocopherols (ca. 528 mg kg?1 of total extracted lipids), followed by γ‐tocopherol (ca. 168 mg kg?1 of total extracted lipids) and δ‐tocopherol (ca. 86 mg kg?1 of total lipids). High levels of phytosterols (ca. 7.8 g kg?1 of total extracted lipids) were detected, among which β‐sitosterol was the most abundant (47 %). All these results highlight the richness of carotenoids, tocopherols and sterols in A. cyanophylla seed oil, and imply that this species might constitute a potential resource for the development of functional foods.  相似文献   

19.
Color is regarded as an important quality parameter for rice bran oil (RBO). Nevertheless, numerous grade‐three and grade‐four RBOs with dark color are currently available in the Chinese market. These oils are usually produced by steam refining and exhibit a mahogany color, which is undesired by customers. Here, we describe the development of a new industrially viable refining method based on multi‐stage molecular distillation (MMD), through which decoloration and fractionation of grade‐four RBO were accomplished, and four kinds of products, pigment oil, semi‐refined oil‐I (SRO‐I), semi‐refined oil‐II (SRO‐II), and semi‐refined oil‐III (SRO‐III), were obtained. The pigment oil was hazy and mahogany colored, containing 84.84 % non‐triacylglycerols, mainly pigments, tocopherols, and free fatty acids. SRO‐I was hazy and orange, containing 20,563 mg/kg of oryzanol (accounting for 77–82 % of raw oil) and was 28.68 % of non‐triacylglycerols. In particular, higher content of monounsaturated triacylglycerols, diunsaturated triacylglycerols and non‐triacylglycerols was responsible for the haze. SRO‐II and SRO‐III had a clear yellow appearance and a non‐triacylglycerol content <1.5 %. These semi‐refined oils were mixed directly after MMD and further refined by mild deacidification and winterization to obtain fully refined oil, which met the requirements of commonly used standards. Notably, the final oil exhibited light color and retained nearly 80 % of the oryzanol of raw oil. The yield of final oil reached 80–85 % through the entire refining process.  相似文献   

20.
Summary A method for the analysis of the total tocopherols in soybean oil has been presented, and judged by distillation and other procedures is estimated to be accurate to within 10%. A discussion is made of the tocopherol to within 10%. A discussion is made of the tocopherol losses in various steps of soybean oil refining. Communication No. 115 from the Research Laboratories of Distillation Products, Inc., Rochester, New York. (Presented at The American Oil Chemists Society meeting in New Orleans, May 20–22, 1947.)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号