首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A new combined power and refrigeration cycle is proposed, which combines the Rankine cycle and the ejector refrigeration cycle. This combined cycle produces both power output and refrigeration output simultaneously. It can be driven by the flue gas of gas turbine or engine, solar energy, geothermal energy and industrial waste heats. An exergy analysis is performed to guide the thermodynamic improvement for this cycle. And a parametric analysis is conducted to evaluate the effects of the key thermodynamic parameters on the performance of the combined cycle. In addition, a parameter optimization is achieved by means of genetic algorithm to reach the maximum exergy efficiency. The results show that the biggest exergy loss due to the irreversibility occurs in heat addition processes, and the ejector causes the next largest exergy loss. It is also shown that the turbine inlet pressure, the turbine back pressure, the condenser temperature and the evaporator temperature have significant effects on the turbine power output, refrigeration output and exergy efficiency of the combined cycle. The optimized exergy efficiency is 27.10% under the given condition.  相似文献   

2.
A new combined power and ejector–absorption refrigeration cycle is proposed, which combines the Rankine cycle and the ejector–absorption refrigeration cycle, and could produce both power output and refrigeration output simultaneously. This combined cycle, which originates from the cycle proposed by authors previously, introduces an ejector between the rectifier and the condenser, and provides a performance improvement without greatly increasing the complexity of the system. A parametric analysis is conducted to evaluate the effects of the key thermodynamic parameters on the cycle performance. It is shown that heat source temperature, condenser temperature, evaporator temperature, turbine inlet pressure, turbine inlet temperature, and basic solution ammonia concentration have significant effects on the net power output, refrigeration output and exergy efficiency of the combined cycle. It is evident that the ejector can improve the performance of the combined cycle proposed by authors previously.  相似文献   

3.
This investigation is persuaded for the first and second law analyses of a new solar‐driven triple‐effect refrigeration cycle using Duratherm 600 oil (Duratherm Extended Life Fluid, NY, USA) as the heat transfer fluid is performed. The proposed cycle is an integration of ejector, absorption, and cascaded refrigeration cycles that could produce refrigeration output of different magnitude at different temperature simultaneously. Both exergy destruction and losses in each component and hence in the overall system are determined to identify the causes and locations of the thermodynamic imperfection. The effects of some influenced parameters such as hot oil outlet temperature, refrigerant turbine inlet pressure, and the evaporator temperature of ejector and cascaded refrigeration cycle have been observed on the first and second law performances. It is found that maximum irreversibility occurs in central receiver as 52.5% and the second largest irreversibility of 25% occurs in heliostat field. The second law efficiency of the solar driven triple effect refrigeration cycle is 2%, which is much lower than its first law efficiency of 11.5%. Analysis clearly shows that performance evaluation based on the first law analysis is inadequate and hence, more meaningful evaluation must be included in the second law analysis. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
Jianlin Yu  Gaolei Tian  Zong Xu 《Energy》2009,34(11):1864-1869
In this paper, exergy method is applied to analyze the ejector expansion Joule–Thomson (EJT) cryogenic refrigeration cycle. The exergy destruction rate in each component of the EJT cycle is evaluated in detail. The effect of some main parameters on the exergy destruction and exergetic efficiency of the cycle is also investigated. The most significant exergy destruction rates in the cycle are in the compressor and ejector. The ejector pressure ratio and compressor isothermal efficiency have a significant effect on the exergetic efficiency of the EJT cycle. The exergy analysis results show the EJT cycle has an obvious increase in the exergetic efficiency compared to the basic Joule–Thomson refrigeration cycle. A significant advantage from the use of the ejector is that the total exergy destruction of the EJT cycle can be reduced due to much more decreasing of the exergy destruction rates in the compressor and expansion valve. The exergy analysis also reconfirms that applying an ejector is a very important approach to improve the performance of the Joule–Thomson cryogenic refrigeration cycle.  相似文献   

5.
A combined power and refrigeration cycle is proposed, which combines the Rankine cycle and the absorption refrigeration cycle. This combined cycle uses a binary ammonia–water mixture as the working fluid and produces both power output and refrigeration output simultaneously with only one heat source. A parametric analysis is conducted to evaluate the effects of thermodynamic parameters on the performance of the combined cycle. It is shown that heat source temperature, environment temperature, refrigeration temperature, turbine inlet pressure, turbine inlet temperature, and basic solution ammonia concentration have significant effects on the net power output, refrigeration output and exergy efficiency of the combined cycle. A parameter optimization is achieved by means of genetic algorithm to reach the maximum exergy efficiency. The optimized exergy efficiency is 43.06% under the given condition.  相似文献   

6.
A combined Rankine and ejector refrigeration cycle is proposed for the production of power and refrigeration output using duratherm 600 oil as the heat transfer fluid. Thermodynamic analysis has been done to observe the effect of parameters on the performance of the combined cycle. The effect of various parameters asthe turbine inlet pressure, evaporator temperature, condenser temperature, extraction ratio and direct normal radiation per unit area on the performance of the cycle have significant effects on the net power output, refrigeration output, first law efficiency and second law efficiency. It is also observed that the maximum irreversibility occurs in central receiver as 52.5% followed by 25% in the heliostat, 5.3% in the heat recovery vapor generator, 2.6% in the ejector, and 1.6% in the turbine and around 1.1% in the other components of the cycle. The second law efficiency of the solar operated combined Rankine and ejector refrigeration cycle is 11.90% which is much lower than its first law efficiency of 14.81%.  相似文献   

7.
This paper presents a parametric analysis of a combined power/cooling cycle, which combines the Rankine and absorption refrigeration cycles, uses ammonia–water mixture as the working fluid and produces power and refrigeration, while power is the primary goal. This cycle, also known as the Goswami Cycle, can be used as a bottoming cycle using waste heat from a conventional power cycle or as an independent cycle using low‐temperature sources such as geothermal and solar energy. Optimum operating conditions were found for a range of ammonia concentration in the basic solution, isentropic turbine efficiency and boiler pressure. It is shown that the cycle can be optimized for net work, cooling output, effective first law and exergy efficiencies. The effect of rectification cooling source (external and internal) on the cycle output was investigated, and it was found that an internal rectification cooling source always produces higher efficiencies. When ammonia vapor is superheated after the rectification process, cycle efficiencies increase but cooling output decreases. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
In this paper, a combined first and second law approach is applied to study an ejector expansion Joule–Thomson cryogenic refrigeration cycle. The effects of the evaporator temperature, ejector pressure ratio and compressor function on the coefficient of performance (COP), exergy destruction and the exergetic efficiency have been investigated. The present study has been conducted for the evaporator and compressor temperature in the range of 75–135 and 270–330 K, respectively. The ejector pressure ratio is varied from 1.5 to 5.5. Simulation results show that COP and exergy efficiency increase with increasing evaporator temperature and ejector pressure ratio. In addition, it was found that the increase in the compressor temperature leads to the reduction in the first and second law efficiencies. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
The thermodynamic performance of an industrial waste heat recovery‐based trigeneration system is studied through energy and exergy efficiency parameters. The effects of exhaust gas inlet temperature, process heat pressure, and ambient temperature on both energy and exergy efficiencies, and electrical to thermal energy ratio of the system are investigated. The energy efficiency increases while electrical to thermal energy ratio and exergy efficiency decrease with increasing exhaust gas inlet temperature. On the other hand, with the increase in process heat pressure, energy efficiency decreases but exergy efficiency and electrical to thermal energy ratio increase. The effect of ambient temperature is also observed due to the fact that with an increase in ambient temperature, energy and exergy efficiencies, and electrical to thermal energy ratio decrease slightly. These results clearly show that performance evaluation of trigeneration system based on energy analysis is not adequate and hence more meaningful evaluation must include exergy analysis. The present analysis contributes to further information on the role of exhaust gas inlet temperature, process heat pressure, ambient temperature influence on the performance of waste heat recovery‐based trigeneration from a thermodynamic point of view. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
In this paper, a model to study the effect of inlet air‐cooling on gas turbines power and efficiency is developed for two different cooling techniques, direct mechanical refrigeration and an evaporative water spray cooler. Energy analysis is used to present the performance improvement in terms of power gain ratio and thermal efficiency change factors. Relationships are derived for an open gas turbine cycle with irreversible compression and expansion processes coupled to air‐cooling systems. The obtained results show that the power and efficiency improvements are functions of the ambient conditions and the gas turbine pressure ratio. The performance improvement is calculated for, ambient temperatures from 30 to 50°C, the whole range of humidity ratio (10–100%) and pressure ratio from 8 to 12. For direct mechanical refrigeration air‐cooling, the power improvement is associated with appreciable drop in the thermal efficiency. The maximum power gain can be obtained if the air temperature is reduced to its lowest limit that is the refrigerant evaporation temperature plus the evaporator design temperature difference. Water spray cooling process is sensitive to the ambient relative humidity and is suitable for dry air conditions. The power gain and efficiency enhancement are limited by the wet bulb temperature. The performance of spray evaporative cooler is presented in a dimensionless working graph. The daily performance of the cooling methods is examined for an ABB‐11D5 gas turbine operating under the hot humid conditions of Jeddah, Saudi Arabia. The results indicate that the direct mechanical refrigeration increased the daily power output by 6.77% versus 2.57% for the spray air‐cooling. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

11.
Combined cycle configuration has the ability to use the waste heat from the gas turbine exhaust gas using the heat recovery steam generator for the bottoming steam cycle. In the current study, a natural gas‐fired combined cycle with indirectly fired heating for additional work output is investigated for configurations with and without reheat combustor (RHC) in the gas turbine. The mass flow rate of coal for the indirect‐firing mode in circulating fluidized bed (CFB) combustor is estimated based on fixed natural gas input for the gas turbine combustion chamber (GTCC). The effects of pressure ratio, gas turbine inlet temperature, inlet temperatures to the air compressor and to the GTCC on the overall cycle performance of the combined cycle configuration are analysed. The combined cycle efficiency increases with pressure ratio up to the optimum value. Both efficiency and net work output for the combined cycle increase with gas turbine inlet temperature. The efficiency decreases with increase in the air compressor inlet temperature. The indirect firing of coal shows reduced use with increase in the turbine inlet temperature due to increase in the use of natural gas. There is little variation in the efficiency with increase in GTCC inlet temperature resulting in increased use of coal. The combined cycle having the two‐stage gas turbine with RHC has significantly higher efficiency and net work output compared with the cycle without RHC. The exergetic efficiency also increases with increase in the gas turbine inlet temperature. The exergy destruction is highest for the CFB combustor followed by the GTCC. The analyses show that the indirectly fired mode of the combined cycle offers better performance and opportunities for additional net work output by using solid fuels (coal in this case). Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
A novel cooling, heat, and power (CHP) system has been proposed that features a semi-closed Brayton cycle with pressurized recuperation, integrated with a vapor absorption refrigeration system (VARS). The semi-closed Brayton cycle is called the high-pressure regenerative turbine engine (HPRTE). The VARS interacts with the HPRTE power cycle through heat exchange in the generator and the evaporator. Waste heat from the recirculated combustion gas of the HPRTE is used to power the absorption refrigeration unit, which cools the high-pressure compressor inlet of the HPRTE to below ambient conditions and also produces excess refrigeration in an amount that depends on ambient conditions. Water produced as a product of combustion is intentionally condensed in the evaporator of the VARS, which is designed to provide sufficient cooling for the inlet air to the high-pressure compressor, water extraction, and for an external cooling load. The computer model of the combined HPRTE/VARS cycle predicts that with steam blade cooling and a medium-sized engine, the cycle will have a thermal efficiency of 49% for a turbine inlet temperature of 1400°C. This thermal efficiency, is in addition to the large external cooling load, generated in the combined cycle, which is 13% of the net work output. In addition, it also produces up to 1.4 kg of water for each kg of fuel consumed, depending upon the fuel type. When the combined HPRTE/VARS cycle is optimized for maximum thermal efficiency, the optimum occurs for a broad range of operating conditions. Details of the multivariate optimization procedure and results are presented in this paper. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
对燃气轮机进口的空气进行预冷,能够提高发电机组的输出功率。与蓄冷方法相比,使用燃气轮机-蒸汽联合循环电站余热锅炉低压蒸发器的一部分蒸汽为热源,利用溴化锂吸收式制冷机制取冷源,冷却燃气轮机进口处的空气,以提高发电机组的输出功率,该方法技术可行,经济效益显著。  相似文献   

14.
B. Zheng  Y.W. Weng 《Solar Energy》2010,84(5):784-1157
A combined power and ejector refrigeration cycle for low temperature heat sources is under investigation in this paper. The proposed cycle combines the organic Rankine cycle and the ejector refrigeration cycle. The ejector is driven by the exhausts from the turbine to produce power and refrigeration simultaneously. A simulation was carried out to analyze the cycle performance using R245fa as the working fluid. A thermal efficiency of 34.1%, an effective efficiency of 18.7% and an exergy efficiency of 56.8% can be obtained at a generating temperature of 395 K, a condensing temperature of 298 K and an evaporating temperature of 280 K. Simulation results show that the proposed cycle has a big potential to produce refrigeration and most exergy losses take place in the ejector.  相似文献   

15.
《Applied Thermal Engineering》2007,27(2-3):381-388
The present study describes a theoretical analysis of a transcritical CO2 ejector expansion refrigeration cycle (EERC) which uses an ejector as the main expansion device instead of an expansion valve. The system performance is strongly coupled to the ejector entrainment ratio which must produce the proper CO2 quality at the ejector exit. If the exit quality is not correct, either the liquid will enter the compressor or the evaporator will be filled with vapor. Thus, the ejector entrainment ratio significantly influences the refrigeration effect with an optimum ratio giving the ideal system performance. For the working conditions studied in this paper, the ejector expansion system maximum cooling COP is up to 18.6% better than the internal heat exchanger cycle (IHEC) cooling COP and 22.0% better than the conventional vapor compression refrigeration cycle (VCRC) cooling COP. At the conditions for the maximum cooling COP, the ejector expansion cycle refrigeration output is 8.2% better than the internal heat exchanger cycle refrigeration output and 11.5% better than the conventional cycle refrigeration output. An exergy analysis showed that the ejector expansion cycle greatly reduces the throttling losses. The analysis was also used to study the variations of the ejector expansion cycle cooling COP for various heat rejection pressures, refrigerant temperatures at the gas cooler exit, nozzle efficiencies and diffuser efficiencies.  相似文献   

16.
The study examines a novel system that combined a solid oxide fuel cell (SOFC) and an organic Rankine cycle (ORC) for cooling, heating and power production (trigeneration) through exergy analysis. The system consists of an SOFC, an ORC, a heat exchanger and a single-effect absorption chiller. The system is modeled to produce a net electricity of around 500 kW. The study reveals that there is 3-25% gain on exergy efficiency when trigeneration is used compared with the power cycle only. Also, the study shows that as the current density of the SOFC increases, the exergy efficiencies of power cycle, cooling cogeneration, heating cogeneration and trigeneration decreases. In addition, it was shown that the effect of changing the turbine inlet pressure and ORC pump inlet temperature are insignificant on the exergy efficiencies of the power cycle, cooling cogeneration, heating cogeneration and trigeneration. Also, the study reveals that the significant sources of exergy destruction are the ORC evaporator, air heat exchanger at the SOFC inlet and heating process heat exchanger.  相似文献   

17.
Abdul Khaliq  Ibrahim Dincer 《Energy》2011,36(5):2662-2670
In this paper, exergy method is applied to analyze the gas turbine cycle cogeneration with inlet air cooling and evaporative aftercooling of the compressor discharge. The exergy destruction rate in each component of cogeneration is evaluated in detail. The effects of some main parameters on the exergy destruction and exergy efficiency of the cycle are investigated. The most significant exergy destruction rates in the cycle are in combustion chamber, heat recovery steam generator and regenerative heat exchanger. The overall pressure ratio and turbine inlet temperature have significant effect on exergy destruction in most of the components of cogeneration. The results obtained from the analysis show that inlet air cooling along with evaporative aftercooling has an obvious increase in the energy and exergy efficiency compared to the basic gas turbine cycle cogeneration. It is further shown that the first-law efficiency, power to heat ratio and exergy efficiency of the cogeneration cycle significantly vary with the change in overall pressure ratio and turbine inlet temperature but the change in process heat pressure shows small variation in these parameters.  相似文献   

18.
Cogeneration has improved sustainability as it can improve the energy utilization efficiency significantly. In this paper, a novel ammonia-water cycle is proposed for the cogeneration of power and refrigeration. In order to meet the different concentration requirements in the cycle heat addition process and the condensation process, a splitting /absorption unit is introduced and integrated with an ammonia–water Rankine cycle and an ammonia refrigeration cycle. This system can be driven by industrial waste heat or a gas turbine flue gas. The cycle performance was evaluated by the exergy efficiency, which is 58% for the base case system (with the turbine inlet parameters of 450 °C/11.1 MPa and the refrigeration temperature below −15 °C). It is found that there are certain split fractions which maximize the exergy efficiency for given basic working fluid concentration. Compared with the conventional separate generation system of power and refrigeration, the cogeneration system has an 18.2% reduction in energy consumption.  相似文献   

19.
This article is a careful examination of an energy poly-generation unit integrated with an evacuated solar thermal tube collector. A proton exchange membrane (PEM) electrolysis unit is used for hydrogen production, an ejector refrigeration system (ERS) is utilized for cooling demand, and a heater unit is used for heating demand. All sub-systems are validated by considering recent articles. Cooling and heating demand, as well as the net output power are calculated. The modeled poly-generation system's exergy and energy efficiency are maximized by considering the inlet temperature of the heat exchanger and primary pressure of the ejector with the parametric evaluation of the system. The proposed poly-generation set-up can produce cooling load, heating load, and hydrogen with amounts of 5.34 kW, 5.152 kW, and 63 kg/year, respectively. Based on these values, the energy ef?ciency, and exergy ef?ciency are computed to be 64.14%, and 49.62%, respectively. Higher energy and exergy ef?ciencies are obtained by reducing high pressure of the refrigeration cycle or decreasing the temperature outlet of an auxiliary heater. The heat exchanger and thermal energy storage unit have the highest cost rate among all system components with 73,463 $ and 46,357, respectively. Parametric study indicates that the main determinative elements in the total cost rate of the system are the heater, and the solar collector.  相似文献   

20.
A thermal‐economic analysis of a transcritical Rankine power cycle with reheat enhancement using a low‐grade industrial waste heat is presented. Under the identical operating conditions, the reheat cycle is compared to the non‐reheat baseline cycle with respect to the specific net power output, the thermal efficiency, the heat exchanger area, and the total capital costs of the systems. Detailed parametric effects are investigated in order to maximize the cycle performance and minimize the system unit cost per net work output. The main results show that the value of the optimum reheat pressure maximizing the specific net work output is approximately equal to the one that causes the same expansion ratio across each stage turbine. Relative performance improvement by reheat process over the baseline is augmented with an increase of the high pressure but a decrease of the turbine inlet temperature. Enhancement for the specific net work output is more significant than that for the thermal efficiency under each condition, because total heat input is increased in the reheat cycle for the reheat process. The economic analysis reveals that the respective optimal high pressures minimizing the unit heat exchanger area and system cost are much lower than that maximizing the energy performance. The comparative analysis identifies the range of operating conditions when the proposed reheat cycle is more cost effective than the baseline. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号