首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 46 毫秒
1.
传统协同过滤算法在计算相似度的时候,未考虑数据稀疏性以及项目类型相似程度,从而影响推荐质量.为了提高推荐精度,提出一种基于可信相似度的协同过滤算法.首先计算项目类型的相似程度与共同评分用户数和所有评分用户数之间的比例,然后根据类型相似程度和共同评分项的比例进行有机结合,计算相似可信度,形成合理的项目可信相似度.实验结果表明,该算法能够有效的提高推荐质量.  相似文献   

2.
张南  林晓勇  史晟辉 《计算机应用》2016,36(8):2246-2251
为提高协同过滤推荐方法的准确性和有效性,提出一种基于改进型启发式相似度模型的协同过滤推荐方法PSJ。该方法考虑了用户评分差值、用户全局评分偏好和用户共同评分物品数三个因素。PSJ方法的Proximity因子使用指数函数反映用户评分差值对用户相似度的影响,这样也可避免零除问题;将NHSM方法中的Significance因子和URP因子合并成PSJ方法的Significance因子,这使得PSJ方法的计算复杂度低于NHSM方法;而且为了提高在数据稀疏情况下的推荐效果,PSJ方法同时考虑了用户间的评分差值和用户全局评分两个因素。实验采用Top-k推荐中的查准率和查全率作为衡量标准。实验结果表明,当推荐物品数大于20时,与NHSM、杰卡尔德算法、自适应余弦相似度(ACOS)算法、杰卡尔德均方差(JMSD)算法和皮尔逊相关系数算法(SPCC)相比,PSJ方法的查准率与查全率均有提升。  相似文献   

3.
协同过滤算法是个性化推荐系统中应用最广泛的一种推荐技术。随着用户数量和项目数量的增加,数据的稀疏性成为影响推荐质量的重要因素。为此,将传统相似度指标修正余弦相似性、Pearson相似度,与结构相似度指标Jaccard系数、Salton系数、IUF系数进行组合,提出6种组合相似度。在Movie Lens上的实验表明,基于组合相似度的优化协同过滤算法在平均绝对偏差MAE、均方根误差RMSE、召回率、覆盖率和确率等性能上都有了较大提高,提高了推荐质量。  相似文献   

4.
针对CF推荐技术依赖的评分矩阵在现实中存在的稀疏性问题,提出用户-项目平均相似度协同过滤推荐算法(ASUCF)。对评分矩阵进行充分挖掘、多次利用,引入平均相似度来惩罚用户或项目的评分或被评分的波动;综合考虑用户和项目两方面,提高预测评分的可靠性。实验结果表明,该方法可以有效提高预测的准确性及推荐质量。  相似文献   

5.
研究了一种新的协同过滤推荐方法。针对推荐算法中相似度存在的不足,提出了兼顾\"形状-距离\"的云模型综合相似度测算方法;考虑用户之间的兴趣匹配,提出了云模型熟悉相似度的概念;提出了基于云模型熟悉相似度的邻居用户选择方法,进而产生推荐。实验结果表明,本方法提高了推荐准确度。  相似文献   

6.
一种基于本体的概念语义相似度方法的研究   总被引:6,自引:0,他引:6  
提出了一种计算不同本体中概念间语义相似度的方法,该方法通过比较实例间的相似度获得初始概念间语义相似度,结合影响概念间语义相似度的两个系数,计算出最终的概念间语义相似度。与概率统计方法进行比较,验证了该方法的有效性。该研究工作可以应用于面向Web的知识检索领域。  相似文献   

7.
由于目前检索技术效率低下,所以需要一种基于本体的检索技术来提高效率。语义相似度计算是基于本体的检索技术的一个关键问题。本文对已有语义相似度计算方法进行总结并改进,最后对其进辑分析  相似文献   

8.
协同过滤算法是目前推荐系统中应用最广泛的技术,相似度的计算是该算法中关键的一步,它直接影响到后续的目标用户邻居集的选取及评分预测,最终决定着推荐的准确度。在传统的基于用户的协同过滤中,相似度的计算未考虑用户评分差异和商品的热度对相似度计算的影响。论文引入平均评分修正因子和热门商品惩罚因子,对传统的相似度计算公式加以优化。实验表明,改进后的相似度算法在电影推荐时,平均绝对误差(MAE)值较其他相似度算法更低,有着更好的推荐效果。  相似文献   

9.
用户间多相似度协同过滤推荐算法   总被引:5,自引:1,他引:4  
传统的User-based协同过滤推荐算法仅采用了单一的评分相似度来度量用户之间对任何项目喜好的相似程度。然而根据日常经验,人们对不同类型事物的喜好程度往往是不同的,单一的评分相似度显然无法准确描述这种不同。针对上述问题,提出了一种基于用户间多相似度的协同过滤推荐算法,即基于用户间对不同项目类型的多个评分相似度来计算用户对未评分项目的预测评分。实验结果表明,该算法可以有效地提高预测评分的准确性及推荐质量。  相似文献   

10.
一种基于本体概念语义距离的服务相似度度量方法   总被引:2,自引:0,他引:2  
随着语义Web服务及语义网格服务应用的不断深入,对服务资源的需求日益增长,服务匹配在服务发现和服务组合研究中的地位也日渐重要.在服务使用OWL-S描述的前提下,服务匹配通常认为是本体概念的匹配,概念匹配的目的是发现概念间的语义相似度.概念的语义相似度不但与概念间的距离有关系,而且还受概念在本体中层次深度的影响.综合考虑这两个因素,提出了一种基于语义距离的概念相似度度量方法,给出了语义距离的定义,明确了语义距离与语义相似度的关系.最后,通过与其他方法的实验比较,验证了该方法的有效性.  相似文献   

11.
基于项目聚类的全局最近邻的协同过滤算法   总被引:1,自引:0,他引:1  
用户评分数据极端稀疏的情况下,传统相似性度量方法存在弊端,导致推荐系统的推荐质量急剧下降。针对此问题,提出了一种基于项目聚类的全局最近部的协同过滤算法。该算法根据项目之间的相似性进行聚类,使得相似性较高的项目聚成一类,在项目聚类集的基础上,计算用户的局部相似度,使用一种新的最近部用户全局相似度作为衡量用户间相似性的标准;其次,给出了一种利用重叠度因子来调节局部相似度的方法,以更准确地刻画用户之间的相似性。实验结果表明,该算法可以提升预测结果的准确性,提高推荐质量,特别是在数据较为稀疏时,改善尤为明显。  相似文献   

12.
何明  杨芃  要凯升  张久伶 《计算机科学》2018,45(Z6):465-470, 486
标签作为Web 2.0时代信息分类和检索的有效方式,已经成为近年的热点研究对象。标签推荐系统旨在利用标签数据为用户提供个性化推荐。现有的基于标签的推荐方法在预测用户对物品的兴趣度时往往倾向于赋予热门标签及其对应的热门物品较大的权重,导致权重偏差,降低了推荐结果的新颖性,未能充分反映用户个性化的兴趣。针对上述问题,定义了标签熵的概念来度量标签的不确定性,提出了标签熵特征表示的协同过滤个性化推荐算法。该算法通过引入标签熵来解决权重偏差问题,利用三分图形式描述用户-标签-项目之间的关系;构建基于标签熵特征表示的用户和项目特征表示,并通过特征相似性度量方法计算项目的相似性;最后利用用户标签行为和项目的相似性线性组合预测用户对项目的偏好值,并根据预测偏好值排序生成最终的推荐列表。在Last.fm数据集上的实验结果表明,该方法能够提高推荐准确性和新颖性,满足用户的个性化需求。  相似文献   

13.
何明  肖润  刘伟世  孙望 《计算机科学》2017,44(8):230-235, 269
协同过滤直接根据用户的行为记录去预测其可能感兴趣的项目,是现今最成功、应用最广泛的推荐技术。推荐的准确度受相似性度量方法效果的影响。传统的相似性度量方法主要关注用户共同评分项之间的相似度,忽视了评分项目中的类别信息,在面对数据稀疏性问题时存在一定的不足。针对上述问题,提出基于分类信息 的评分矩阵填充方法,结合用户兴趣相似度计算方法并充分考虑到评分项目的类别信息,使得兴趣度的度量更加符合推荐系统应用的实际情况。实验结果表明,该算法可以弥补传统相似性度量方法的不足,缓解评分数据稀疏对协同过滤算法的影响,能够提高推荐的准确性、多样性和新颖性。  相似文献   

14.
何明  要凯升  杨芃  张久伶 《计算机科学》2018,45(Z6):415-422
标签推荐系统旨在利用标签数据为用户提供个性化推荐。已有的基于标签的推荐方法往往忽视了用户和资源本身的特征,而且在相似性度量时仅针对项目相似性或用户相似性进行计算,并未充分考虑二者之间的有效融合,推荐结果的准确性较低。为了解决上述问题,将标签信息融入到结合用户相似性和项目相似性的协同过滤中,提出融合标签特征与相似性的协同过滤个性化推荐方法。该方法在充分考虑用户、项目以及标签信息的基础上,利用二维矩阵来定义用户-标签以及标签-项目之间的行为。构建用户和项目的标签特征表示,通过基于标签特征的相似性度量方法计算用户相似性和项目相似性。基于用户标签行为和用户与项目的相似性线性组合来预测用户对项目的偏好值,并根据预测偏好值排序,生成最终的推荐列表。在Last.fm数据集上的实验结果表明,该方法能够提高推荐的准确度,满足用户的个性化需求。  相似文献   

15.
首先采用物质流动算法进行二部图相似系数投影,然后利用随机游走模型得到协同过滤结果。在计算相似系数时,采用了考虑用户和项目联合度分布特征的改进算法。通过数据模拟可知,在最优情况下推荐项目准确率提高了18. 19%,推荐项目多样性提高了21. 90%。对用户和项目联合度的分布进行了统计分析,结果表明,在最优情况下,其符合指数为--2. 33的指数分布。  相似文献   

16.
随着本体的增多,本体异构是本体间互操作的主要障碍,阻碍了本体信息共享,解决本体异构最好的方法是本体映射。本体映射的关键是概念相似度的计算,但现今的计算模型考虑的影响因素比较单一。结合距离语义相似度和属性语义相似度,提出了一种综合语义相似度计算方法。实验证明,该方法可以提高计算结果的精确度。  相似文献   

17.
针对传统的基于余弦相似性的协同过滤算法中推荐集选取方法进行了改进,设计了一种新的评分方式预测用户对未评价项目的评分,从而增强了推荐的合理性。实验结果表明,该算法同传统协同过滤算法相比能显著提高推荐精度。  相似文献   

18.
随着大数据时代的到来,应用数据量剧增,个性化推荐技术日趋重要。传统的推荐技术直接应用于大数据环境时会面临推荐精度低、推荐时延长以及网络开销大等问题,导致推荐性能急剧下降。针对上述问题,提出用户共现矩阵乘子推荐策略,将用户相似度矩阵与项目评分矩阵相乘得到用户对项目的预测评分矩阵,从而生成对每个用户的候选推荐项目集;在此基础上,根据分布式处理架构的特点对传统协同过滤算法进行并行化扩展,设计了基于用户的分布式协同过滤算法;最后通过重定义序列组合的MapReduce模式将多个子任务串联起来,自动地完成顺序化的执行。实验结果表明,该算法在分布式计算环境下具有良好的推荐精度和推荐效率。  相似文献   

19.
张峻玮  杨洲 《计算机科学》2014,41(12):176-178
为了降低组用户推荐的计算时间,提出了一种改进的层次聚类协同过滤用户推荐算法。由于数据的稀疏性,传统的聚类方法在尝试划分用户群时效果不理想。考虑到传统聚类算法的聚类中心不变组内用户间相关度不高等问题,将用户进行聚类,然后按照分类计算出每个用户的推荐结果,在进行聚类的同时充分利用用户间的信息传递来增强组内用户的信息共享,最后将组内所有的用户的推荐结果进行聚合。最后仿真实验表明,本方法能够有效地提高推荐的准确度,比传统的协同过滤算法具有更高的执行效率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号