首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
以甲苯/正庚烷为溶剂,用溶液聚合法合成三元乙丙橡胶(EPDM)-苯乙烯(St)-丙烯腈(An)接枝共聚物(EPDM-g-SAN),用常压蒸馏法回收并提纯溶剂。以回收溶剂与新溶剂按比例混合,用于EPDM-g-SAN的合成。研究了EPDM/St-An的接枝共聚合反应行为以及EPDM-g-SAN与SAN树脂共混制备的AES。用气相色谱质谱分析了回收溶剂的组成,用FTIR及TG分析了回收溶剂的用量分别对接枝产物的结构和AES的热稳定性的影响。结果表明,回收溶剂有乙苯生成,并存在残留单体;回收溶剂中的甲苯、丙烯腈、甲基环己烷和3-甲基己烷的相对含量随回收次数的增加而提高,正庚烷和苯乙烯含量则有减少趋势;回收溶剂的用量对接枝共聚合反应行为和接枝产物的结构,以及对AES的冲击强度、拉伸性能、弯曲性能、熔体流动速率和热稳定性的影响甚微。  相似文献   

2.
The effect of aging on synthesis by the graft copolymerization of styrene onto random ethylene–propylene–diene monomer with benzoyl peroxide (BPO) as the initiator is described. Results showed that yields of graft copolymer are increased in the first 10 min. After 10 min, the total polymer produced has a maximum at about 25 min. However, the portion of the graft copolymer is decreased and the portion of the pure polystyrene is increased. In addition, the influence factors, such as reaction time, temperature, BPO concentrations and styrene concentrations, effect of solvents on the extent of graft copolymerization were discussed. The extent of grafted copolymerization was verified by hexane and acetone Soxhlet (solvent extraction). © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 4809–4813, 2006  相似文献   

3.
杨力  刘伟涛  王炼石 《弹性体》2012,22(2):49-54
用悬浮法在乙烯-丙烯-乙叉降冰片烯三元乙丙橡胶(EPDM)上接枝甲基丙烯酸甲酯-丙烯腈(MMA-AN),将接枝共聚物EPDM-g-MAN与苯乙烯-丙烯腈共聚物(SAN)树脂共混,得到高抗冲、耐老化性能优异的工程塑料。FTIR分析表明,EPDM确已接枝上了MMA-AN支链。研究了AN含量和EPDM含量对EPDM-g-MAN/SAN共混物力学性能的影响。随着EPDM含量的增加,共混物缺口冲击强度先升后降,在AN质量分数为5%,EPDM质量分数为25%时达到最大值76.8kJ/m2,拉伸和弯曲强度逐步下降。扫描电镜(SEM)和差示扫描热(DSC)分析表明,在EPDM质量分数为15%时,共混物室温条件下受外界冲击发生脆韧转变,EPDM-g-MAN与SAN具有较好的相容性。TG分析表明,随着EPDM含量增加,EPDM-g-MAN/SAN共混物的热失重起始温度有所上升,热稳定性得到提高。  相似文献   

4.
High rubber styrene–EPDM–acrylonitrile (AES) was prepared by the graft copolymerization of styrene (St) and acrylonitrile (AN) onto ethylene–propylene–diene terpolymer (EPDM) in n‐heptane/toluene cosolvent using benzoyl peroxide as an initiator. The effects of reaction conditions, such as reaction temperature, initiator concentration, EPDM content, the solvent component, and reaction time, on the graft copolymerization are discussed. In addition, according to the research on mechanical properties of the SAN/AES blend, a remarkable toughening effect of AES on SAN resin was found. By means of scanning electron microscopy, the toughening mechanism is proposed to be crazing initiation from rubber particles and shear deformation of SAN matrix. Uniform dispersion of rubber particles, as shown by transmission electron microscopy, is attributed to the good compatibility of SAN and AES. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 416–423, 2004  相似文献   

5.
A new copolymer of tris(2‐methoxyethoxy) vinylsilane (TMEVS)‐grafted ethylene–propylene–diene elastomer (EPDM‐g‐TMEVS) has been developed by grafting of TMEVS onto EPDM by using dicumylperoxide (DCP) initiator. The linear polystyrene blends (EPDM‐g‐TMEVS/PS) based on EPDM‐g‐TMEVS have been synthesized with varying weight percentages of polystyrene in a twin‐screw extruder. In a similar manner, the dynamically vulcanized and nanoclay‐reinforced polystyrene blends have also been developed using DCP and organically modified montmorillonite clay separately by means of a twin‐screw extruder. The grafting of TMEVS onto EPDM at allylic position present in the third monomer of EPDM has been confirmed by Fourier Transform infrared spectroscopy. The effect of silane‐grafted EPDM and concentration of nanoclay on mechanical properties of polystyrene blends has been studied as per ASTM standards. The morphological behavior of these blends has been investigated using scanning electron microscope. It was observed that the incorporation of silane‐grafted EPDM enhanced the impact strength and the percentage elongation of linear‐ and dynamically vulcanized blends. However, the values of tensile strength, flexural strength, flexural modulus, and hardness of the blends were found to be decreasing with the increase of silane‐grafted EPDM. In the case of nanoclay‐reinforced polystyrene blends, the values of impact strength, tensile strength, flexural strength, flexural modulus, and hardness were increased with an increase in the concentration of nanoclay. XRD studies have been carried out to confirm the formation of nanoclay‐reinforced EPDM‐g‐TMEVS/PS blends. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

6.
Cation‐exchange hollow fiber membrane was prepared by radiation‐induced grafting polymerization of styrene onto polyethylene hollow fiber membrane and its sulfonation. Adsorption characteristics for the cation‐exchange membranes are examined when the solution of Co2+ permeates across the cation‐exchange fiber membrane. The maximum grafting peak was obtained from 70% styrene concentration at 50°C. The degree of grafting (%) was enhanced with additives such as H2SO4 and divinylbenzene. The content of  SO3H groups ranged from 2 to 5 mmol g−1 with chlorosulfonic acid (ClSO3H) in dichloroethane, from 0.5 to 6 mmol g−1 with ClSO3H in H2SO4, respectively. The adsorption of Co2+ by the cation‐exchange membranes increased with increasing  SO3H content. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 2227–2235, 1999  相似文献   

7.
The graft copolymerizations of vinyltrimethoxysilane (VTMO) and styrene (St) onto ethylene–propylene–diene terpolymer (EPDM) were carried out with benzoyl peroxide (BPO) as an initiator in toluene. The effects of EPDM concentration, mole ratio of VTMO to St, reaction time, reaction temperature, and initiator concentration on the graft copolymerizations were examined. The synthesized VTMO–EPDM–St graft terpolymers (VES) were confirmed by infrared and 1H-NMR spectroscopies. The molecular weight, thermal stability, light resistance, and weatherability of the graft terpolymer were investigated by gel permeation chromatography, thermogravimetric analysis, and Fade-o-Meter. The number-average molecular weight was 109,000. It was found that the heat resistance and light resistance as well as weatherability of VES are considerably better than those of acrylonitrile–butadiene–styrene terpolymer. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 67:1345–1352, 1998  相似文献   

8.
POE-g-MAS增韧SAN树脂及其相容性   总被引:1,自引:0,他引:1  
合成了乙烯-辛烯共聚物(POE)和甲基丙烯酸甲酯-丙烯腈-苯乙烯的接枝共聚物(POE-g-MAS).用POE-g-MAS与苯乙烯-丙烯腈共聚物(SAN)树脂共混制备了具有高抗冲击性能的SAN,POE-g-MAS共混物,研究了接枝链极性、接枝率和POE含量对共混物冲击性能的影响,当m(St)/m(MMA)/m(An)为10:70:20,接枝率为45.1%,w(POE)为25%时,共混物的缺口冲击强度达到56.1kJ/m2.用扫描电子显微镜和差示扫描量热仪研究表明,POE-g-MAS与SAN树脂有良好的相容性.  相似文献   

9.
The graft copolymerization of methyl‐methacrylate onto viscose fibers was studied under photoactive conditions with visible light using Ce4+/Ti3+ combination as redox initiator in a limited aqueous medium. Polymerization conducted in the presence of light at 30 ± 1°C produced significant grafting, compared with that conducted in the dark under the same conditions. The % grafting, % total conversion, and % grafting efficiency were studied by varying time, monomer concentration, initiator concentration, and pH of the medium. The mechanism of polymerization and graft copolymer formation have been discussed. Characterization of the grafted fibers was done by Fourier transform infrared spectroscopy and scanning electron microscopy. The effect of % grafting on thermal properties was studied by thermogravimetric analysis. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 135–140, 1999  相似文献   

10.
The graft copolymerization of maleic anhydride (MAH) onto acrylonitrile‐butadiene‐styrene terpolymer (ABS) using dicumyl peroxide and benzoyl peroxide as the binary initiator and styrene as the comonomer in the molten state was described. The properties and phase morphologies of the modified products (ABS‐g‐MAH) were studied. The results indicate that the melt flow index (MFI) of ABS‐g‐MAH increases with the increase of MAH content, the initiator concentration, and the screw speed, whereas the MFI decreases with the increase of temperature. The impact strength and the percentage elongation of ABS‐g‐MAH both decreased and the tensile strength of ABS‐g‐MAH increased slightly as the grafting degree increased. The phase inversion behavior of the modified product was observed by transmission electron microscopy. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 2834–2839, 2004  相似文献   

11.
The structure of the PA6/mEPDM/EPDMgMA/organoclay ternary hybrids was characterized and related to its properties. The nanoblends were prepared through four different blending sequences based on one‐ or two‐step processes: (1) The PA6/organoclay nanocomposite was prepared and then mixed with the mEPDM+ EPDMgMA compound; (2) the mEPDM+EPDMgMA+ organoclay compound was first prepared and then mixed with PA6; (3) the PA6, mEPDM, EPDMgMA, and organoclays were blended in one step; and (4) the PA6/mEPDM/EPDMgMA blend was prepared and then mixed with the organoclay. The microscopic study of the nanoblends showed a relationship between the blending sequence and the dispersion of the organoclay and the rubber. Nevertheless, the mechanical characterization showed slight differences bet ween the blending sequence because of the presence of the organoclay in the matrix, rubber, or interface. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

12.
Poly(epichlorohydrin) possessing chloromethyl side groups in the main chain was used in the atom transfer radical polymerization of methyl methacrylate and styrene to yield poly(epichlorohydrin‐g‐methyl methacrylate) and poly(epichlorohydrin‐g‐styrene graft copolymers. The polymers were characterized by 1H NMR spectroscopy, gel permeation chromatography, differential scanning calorimetry, and fractional precipitation method. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 2725–2729, 2006  相似文献   

13.
EPDM-graft-methyl methacrylate and styrene (EPDM-g-MMA-St) was synthesized by solution graft copolymerization of methyl methacrylate (MMA) and styrene(St) onto ethylene-proplene-diene terpolymer (EPDM) in toluene/n-heptane cosolvent using benzoyl peroxide as an initiator. Fourier transform infrared spectroscopy provides a substantial evidence of grafting of MMA and St onto EPDM. EPDM-g-MMA-St/MS resin blends (MES) were prepared by melt blending EPDM-g-MMA-St and MS resin, and the toughening effects of EPDM-g-MMA-St on MS resin were studied. The results showed that the synthesized conditions of EPDM-g-MMA-St influenced the toughening effect of EPDM-g-MMA-St on MS resin. Notched Izod impact strength of MES increased with increasing grafting ratio, grafting chain polarity of EPDM-g-MMA-St, and EPDM content in MES. Differential scanning calorimetry showed that EPDM-g-MMA-St and MS resin are compatible partially and the compatibility improves with increasing grafting chain polarity of EPDM-g-MMA-St. Transmission electron microscopy and scanning electron microscopy analysis showed that the phase structure was “sea-island” structure, and the particle diameter of EPDM-g-MMA-St increased, meanwhile, surface to surface interparticle distance decreased with an increase in EPDM content, which resulted in the toughening mechanism of MES changed into slight shear yielding of matrix from the damage mode of cavitation. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

14.
This study evaluates the effects of ethylene‐propylene‐diene‐monomer grafted maleic anhydride (EPDM‐g‐MAH) and internal mixer melt compounding processing parameters on the properties of natural rubber/ethylene‐propylene‐diene rubber (NR/EPDM) blends. Using Response Surface Methodology (RSM) of 25 two‐level fractional factorial, we studied the effects of NR/EPDM ratio, mixing temperature, Banbury rotor speed, mixing period, and EPDM‐g‐MAH contents in NR/EPDM blends. The study found that the presence of EPDM‐g‐MAH in NR/EPDM blends had a predominant role as a compatibilizing agent, which affected the processability and properties of the final material. We also determined the model fitting with constant determination, R2 of 99.60% for tensile strength (TS) response with a suggested combination of mixing process input parameters. The reproducibility of the proposed mixing strategy was then confirmed through model validation with a minor deviation at +2.303% and higher desirability of 0.960. This study is essential in providing a process design reference for NR/EPDM blends preparation by melt‐blending and the role of a compatibilizer from the systematic Design of Experiment (DOE) approach. The experimental findings were further supported with swelling and cross‐link density measurements, differential scanning calorimetry analysis, and observation of fracture morphology using a scanning electron microscope. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42199.  相似文献   

15.
The phase morphology and toughening behavior of impact polypropylene copolymer (IPC) with and without nucleating agent (NA), prepared at different processing melt temperatures (Tp), were investigated. Interestingly, three different structures can be formed in the IPC samples by adding NA or tuning Tp. A well‐defined core–shell structure is obtained in samples with α‐NA or without NA prepared at all Tp. A developing multilayered structure is mainly formed at high Tp with added β‐NA, while an incomplete phase separation structure with interpenetrating chains is the dominant structure for IPC samples prepared at low Tp with added β‐NA. In this case, because of the synergistic effect between phase morphology and relatively high β‐form crystal content, the chain interaction among the components and chain mobility of the amorphous portion of IPC are distinctly improved, resulting in a largely improved toughness under 0 °C. This improvement in toughness is very important for applications. © 2012 Society of Chemical Industry  相似文献   

16.
Six chelating hollow fiber membranes were prepared by radiation‐induced grafting of glycidyl methacrylate onto a polyethylene hollow fiber membrane and its subsequent amination. The adsorption characteristics of Pb2+ and Pd2+ for the chelating hollow fiber membranes were presented when the solution of Pb2+ and Pd2+ permeates across the chelating membrane, respectively. The degree of grafting for glycidyl methacrylate increases with increasing monomer concentration, reaction temperature, and preirradiation dose. The adsorption of Pd2+ by chelating hollow fiber membranes modified with five kinds of amines was in the following order: diethylene triamine > hexamethyl diamine > ethylene diamine > dimethyl amine > trimethyl amine. The chelating hollow fiber membrane modified with iminodiacetic acid adsorbed Pb2+ ions much more than Pd2+. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 643–650, 1999  相似文献   

17.
A spherical TiCl4/MgCl2‐based catalyst was used in the synthesis of polyethylene/polypropylene/poly (ethylene‐co‐propylene) in‐reactor alloys by sequential homopolymerization of ethylene, homopolymerization of propylene, and copolymerization of ethylene and propylene in gas‐phase. Different conditions in the third stage, such as the pressure of ethylene–propylene mixture and the feed ratio of ethylene, were investigated, and their influences on the compositions, structural distribution and properties of the in‐reactor alloys were studied. Increasing the feed ratio of ethylene is favorable for forming random ethylene–propylene copolymer and segmented ethylene–propylene copolymer, however, slightly influences the formation of ethylene‐b‐propylene block copolymer and homopolyethylene. Raising the pressure of ethylene–propylene mixture results in the increment of segmented ethylene–propylene copolymer, ethylene‐b‐propylene block copolymer, and PE fractions, but exerts a slight influence on both the random copolymer and PP fractions. The impact strength of PE/PP/EPR in‐reactor alloys can be markedly improved by increasing the feed ratio of ethylene in the ethylene–propylene mixture or increasing the pressure of ethylene–propylene mixture. However, the flexural modulus decreases as the feed ratio of ethylene in the ethylene–propylene mixture or the pressure of ethylene–propylene mixture increases. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 2481–2487, 2006  相似文献   

18.
This study examines the phase behavior of ethylene–vinyl acetate copolymer (EVA) and poly(methyl methacrylate) (PMMA) blends during MMA polymerization. The ternary PMMA/MMA/EVA mixtures are considered to create a triangular phase diagram, which responds the phase changes during polymerization. The phase changes during MMA polymerization are also examined by optical microscope and photometer. Since the PMMA and EVA are well‐known immiscibles, the polymer solution undergoes phase separation at the initial stage of the MMA polymerization. Additionally, the phase inversion occurs as the conversion of MMA between 13.8 and 20.8%. On the other hand, the EVA‐graft‐PMMA, which can reduce the dispersed EVA particle size, is induced efficiently by taking tert‐butyl peroctoate (t‐BO) as initiator during MMA polymerization. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 1001–1008, 2003  相似文献   

19.
Three polypropylene‐g‐polystyrene (PP‐g‐PS) graft copolymers with the same branch density but different branch lengths were evaluated as compatibilizing agents for PP/PS blends. The morphological and rheological results revealed that the addition of PP‐g‐PS graft copolymers significantly reduced the PS particle size and enhanced the interfacial adhesion between PP and PS phases. Furthermore, it is verified that the branch length of PP‐g‐PS graft copolymer had opposite effects on its compatibilizing effect: on one hand, increasing the branch length could improve the compatibilizing effect of graft copolymer on PP/PS blends, demonstrated by the reduction of PS particle size and the enhancement of interfacial adhesion; on the other hand, increasing the branch length would increase the melt viscosity of PP‐g‐PS graft copolymer, which prevented it from migrating effectively to the interface of blend components. Additionally, the crystallization and melting behaviors of PP and PP/PS blends were compared. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40126.  相似文献   

20.
Graft copolymers of polystyrene (PSt) with spherical polypropylene (PP) granules were synthesized by solid‐state reaction. In the copolymerization as a by‐product some gel was formed. The effects of the amount of free radical initiator, feed ratio of St monomer, species of free radical initiator, and composition of the spherical polyolefin granules on the grafting degree of PSt and the gelation were studied. It is found that larger amount of initiator used, and higher feed ratio of St monomer lead to a higher grafting degree and higher content of gel. During the cross‐link reaction process, both styrene and free‐radical participate in the reaction that discloses the reason of the increment of gel with the increment of styrene consumption or initiator consumption. Using PPR, which is a random copolymer of 95.1 mol % propylene units and 4.9 mol % ethylene units, as grafting matrix, higher grafting degree and higher content of gel can be reached than that using isotactic PP as grafting matrix. Using tert‐butyl peroxy benzoate (TBPB) as initiator, under the same conditions there were more PSt grafted to the spherical PP granules and more gel formed than that using benzoyl peroxide (BPO) as initiator. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 3682–3687, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号