首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 91 毫秒
1.
基于自适应形态滤波的医学超声图像降噪   总被引:3,自引:0,他引:3  
针对医学超声图像上的斑点噪声,本文提出一种基于自适应形态滤波的降噪方法.首先构造一组检测图像中不同像素值突变的结构因子;再对每个结构因子构造相应的形态滤波结构元;最后对每个像素点邻域进行结构检测,找到该点处最可能存在的突变结构,以相应的结构元完成该点的形态滤波.对不同信噪比的仿真图像和实际图像分别采用本文方法和各向异性扩散滤波,不同尺度传统形态滤波进行了:比较实验,结果表明:采用本方法可将超声图像的信噪比、对比度噪声比和图像优度分别平均提高15%、37%和69%,优于其它方法.  相似文献   

2.
This paper investigates the use of coded excitation for blood flow estimation in medical ultrasound. Traditional autocorrelation estimators use narrow-band excitation signals to provide sufficient signal-to-noise-ratio (SNR) and velocity estimation performance. In this paper, broadband coded signals are used to increase SNR, followed by subband processing. The received broadband signal is filtered using a set of narrow-band filters. Estimating the velocity in each of the bands and averaging the results yields better performance compared with what would be possible when transmitting a narrow-band pulse directly. Also, the spatial resolution of the narrow-band pulse would be too poor for brightness-mode (B-mode) imaging, and additional transmissions would be required to update the B-mode image. For the described approach in the paper, there is no need for additional transmissions, because the excitation signal is broadband and has good spatial resolution after pulse compression. This means that time can be saved by using the same data for B-mode imaging and blood flow estimation. Two different coding schemes are used in this paper, Barker codes and Golay codes. The performance of the codes for velocity estimation is compared with a conventional approach transmitting a narrow-band pulse. The study was carried out using an experimental ultrasound scanner and a commercial linear array 7 MHz transducer. A circulating flow rig was scanned with a beam-to-flow angle of 60 degrees. The flow in the rig was laminar and had a parabolic flow-profile with a peak velocity of 0.09 m/s. The mean relative standard deviation of the velocity estimate using the reference method with an 8-cycle excitation pulse at 7 MHz was 0.544% compared with the peak velocity in the rig. Two Barker codes were tested with a length of 5 and 13 bits, respectively. The corresponding mean relative standard deviations were 0.367% and 0.310%, respectively. For the Golay coded experiment, two 8-bit codes were used, and the mean relative standard deviation was 0.335%.  相似文献   

3.
调频信号发射超声成像的参数优化与成像实验   总被引:1,自引:0,他引:1  
研究调频信号发射超声成像中影响成像质量的各种参数,提高现有超声图像的信号噪声比.用仿真计算和声学实验来研究不同调频超声信号发射参数下的成像质量.增加超声发射能量,提高图像的信号噪声比;同时,采用相关算法对接收的超声信号解码,保证图像的轴向精度不会下降.优化了调频信号发射超声成像的发射参数,并得到了仿体的B型超声图像,此图像的质量优于传统成像方法的图像质量.该成像方法能够提高超声图像的信号噪声比,尤其是提高超声衰减严重的深部组织图像的信号噪声比.  相似文献   

4.
Harmonic chirp imaging method for ultrasound contrast agent   总被引:2,自引:0,他引:2  
Coded excitation is currently used in medical ultrasound to increase signal-to-noise ratio (SNR) and penetration depth. We propose a chirp excitation method for contrast agents using the second harmonic component of the response. This method is based on a compression filter that selectively compresses and extracts the second harmonic component from the received echo signal. Simulations have shown a clear increase in response for chirp excitation over pulse excitation with the same peak amplitude. This was confirmed by two-dimensional (2-D) optical observations of bubble response with a fast framing camera. To evaluate the harmonic compression method, we applied it to simulated bubble echoes, to measured propagation harmonics, and to B-mode scans of a flow phantom and compared it to regular pulse excitation imaging. An increase of approximately 10 dB in SNR was found for chirp excitation. The compression method was found to perform well in terms of resolution. Axial resolution was in all cases within 10% of the axial resolution from pulse excitation. Range side-lobe levels were 30 dB below the main lobe for the simulated bubble echoes and measured propagation harmonics. However, side-lobes were visible in the B-mode contrast images.  相似文献   

5.
6.
This paper presents a new method of blind two-dimensional (2-D) homomorphic deconvolution and speckle reduction applied to medical ultrasound images. The deconvolution technique is based on an improved 2-D phase unwrapping scheme for pulse estimation. The input images are decomposed into minimum-phase and allpass components. The 2-D phase unwrapping is applied only to the allpass component. The 2-D phase of the minimum-phase component is derived by a Hilbert transform. The accuracy of 2-D phase unwrapping is also improved by processing small (16 x 16 pixels) overlapping subimages separately. This takes the spatial variance of the ultrasound pulse into account. The deconvolution algorithm is applied separately to the first and second harmonic images, producing much sharper images of approximately the same resolution and different speckle patterns. Speckle reduction is made by adding the envelope images of the deconvolved first and second harmonic images. Neither the spatial resolution nor the frame rate decreases, as the common compounding speckle reduction techniques do. The method is tested on sequences of clinical ultrasound images, resulting in high-resolution ultrasound images with reduced speckle noise.  相似文献   

7.
Applying vibration to a medium makes it vibrate. The resulting change in scatterer distribution inside the medium due to applied vibration changes the speckle pattern of ultrasound images. In this case, scatterers in a hard medium experience small displacements, and those in a soft medium experience large displacements. As a result, the amount of speckle pattern brightness change in ultrasound images is related to the tissue stiffness. Using this dependency, a two-dimensional profile of relative tissue stiffness can be constructed qualitatively at the display pixel resolution by determining at each pixel the standard deviation and/or the difference between minimum and maximum values over a certain number of consecutive B-mode images. Experiments with phantoms show that the softer the tissue, the larger the standard deviation. The proposed imaging modality is a simple yet practical method of resolving hard cysts surrounded by soft background in a phantom using B-mode frame data only.  相似文献   

8.
Observed medical ultrasound images are degraded representations of the true tissue reflectance. The specular reflections at boundaries between regions of different tissue types are blurred, and the diffuse scattering within such regions also contains speckle. This reduces the diagnostic value of such images. In order to remove both blur and speckle, the authors develop a maximum a posteriori deconvolution algorithm for two-dimensional (2-D) ultrasound radio frequency (RF) images based on a new Markov random field image model incorporating spatial smoothness constraints and physical models for specular reflections and diffuse scattering. During stochastic relaxation, the algorithm alternates steps of restoration and segmentation, and includes estimation of reflectance parameters. The smoothness constraints regularize the overall procedure, and the algorithm uses the specular reflection model to locate region boundaries. The resulting restorations of some simulated and real RF images are significantly better than those produced by Wiener filtering  相似文献   

9.
We present a new algorithm for deriving a second-order Volterra filter (SVF) capable of separating linear and quadratic components from echo signals. Images based on the quadratic components are shown to provide contrast enhancement between tissue and ultrasound contrast agents (UCAs) without loss in spatial resolution. It is also shown that the quadratic images preserve the low scattering regions due to their high dynamic range when compared with standard B-mode or harmonic images. A robust algorithm for deriving the filter has been developed and tested on real-time imaging data from contrast and tissue-mimicking media. Illustrative examples from image targets containing contrast agent and tissue-mimicking media are presented and discussed. Quantitative assessment of the contrast enhancement is performed on both the RF data and the envelope-detected log-compressed image data. It is shown that the quadratic images offer levels of enhancement comparable or exceeding those from harmonic filters while maintaining the visibility of low scattering regions of the image.  相似文献   

10.
Observed medical ultrasound images are degraded representations of the true acoustic tissue reflectance. The degradation is due to blur and speckle and significantly reduces the diagnostic value of the images. To remove both blur and speckle, we have developed a new statistical model for diffuse scattering in 2-D ultrasound radio frequency images, incorporating both spatial smoothness constraints and a physical model for diffuse scattering. The modeling approach is Bayesian in nature, and we use Markov chain Monte Carlo methods to obtain the restorations. The results from restorations of some real and simulated radio frequency ultrasound images are presented and compared with results produced by Wiener filtering  相似文献   

11.
This paper presents a new method for 2-D blind homomorphic deconvolution of medical B-scan ultrasound images. The method is based on noise-robust 2-D phase unwrapping and a noise-robust procedure to estimate the pulse in the complex cepstrum domain. Ordinary Wiener filtering is used in the subsequent deconvolution. The resulting images became much sharper with better defined tissue structures compared with the ordinary images. The deconvolved images had a resolution gain of the order of 3 to 7, and the signal-to-noise ratio (SNR) doubled for many of the images used in our experiments. The method gave stable results with respect to noise and gray levels through several image sequences  相似文献   

12.
A new method for 3-D ultrasound volume reconstruction using tracked freehand 3-D ultrasound is proposed. The method is based on solving the forward volume reconstruction problem using direct interpolation of high-resolution ultrasound B-mode image frames. A series of ultrasound B-mode image frames (an image series) is acquired using the freehand scanning technique and position sensing via optical tracking equipment. The proposed algorithm creates additional intermediate image frames by directly interpolating between two or more adjacent image frames of the original image series. The target volume is filled using the original frames in combination with the additionally constructed frames. Compared with conventional volume reconstruction methods, no additional filling of empty voxels or holes within the volume is required, because the whole extent of the volume is defined by the arrangement of the original and the additionally constructed B-mode image frames. The proposed direct frame interpolation (DFI) method was tested on two different data sets acquired while scanning the head and neck region of different patients. The first data set consisted of eight B-mode 2-D frame sets acquired under optimal laboratory conditions. The second data set consisted of 73 image series acquired during a clinical study. Sample volumes were reconstructed for all 81 image series using the proposed DFI method with four different interpolation orders, as well as with the pixel nearest-neighbor method using three different interpolation neighborhoods. In addition, volumes based on a reduced number of image frames were reconstructed for comparison of the different methods' accuracy and robustness in reconstructing image data that lies between the original image frames. The DFI method is based on a forward approach making use of a priori information about the position and shape of the B-mode image frames (e.g., masking information) to optimize the reconstruction procedure and to reduce computation times and memory requirements. The method is straightforward, independent of additional input or parameters, and uses the high-resolution B-mode image frames instead of usually lower-resolution voxel information for interpolation. The DFI method can be considered as a valuable alternative to conventional 3-D ultrasound reconstruction methods based on pixel or voxel nearest-neighbor approaches, offering better quality and competitive reconstruction time.  相似文献   

13.
Ultrasound simulators can be used for training ultrasound image acquisition and interpretation. In such simulators, synthetic ultrasound images must be generated in real time. Anatomy can be modeled by computed tomography (CT). Shadows can be calculated by combining reflection coefficients and depth dependent, exponential attenuation. To include speckle, a pre-calculated texture map is typically added. Dynamic objects must be simulated separately. We propose to increase the speckle realism and allow for dynamic objects by using a physical model of the underlying scattering process. The model is based on convolution of the point spread function (PSF) of the ultrasound scanner with a scatterer distribution. The challenge is that the typical field-of-view contains millions of scatterers which must be selected by a virtual probe from an even larger body of scatterers. The main idea of this paper is to select and sample scatterers in parallel on the graphic processing unit (GPU). The method was used to image a cyst phantom and a movable needle. Speckle images were produced in real time (more than 10 frames per second) on a standard GPU. The ultrasound images were visually similar to images calculated by a reference method.  相似文献   

14.
This paper investigates a new approach devoted to displacement vector estimation in ultrasound imaging. The main idea is to adapt the image formation to a given displacement estimation method to increase the precision of the estimation. The displacement is identified as the zero crossing of the phase of the complex cross-correlation between signals extracted from the lateral direction of the ultrasound RF image. For precise displacement estimation, a linearity of the phase slope is needed as well as a high phase slope. Consequently, a particular point spread function (PSF) dedicated to this estimator is designed. This PSF, showing oscillations in the lateral direction, leads to synthesis of lateral RF signals. The estimation is included in a 2-D displacement vector estimation method. The improvement of this approach is evaluated quantitatively by simulation studies. A comparison with a speckle tracking technique is also presented. The lateral oscillations improve both the speckle tracking estimation and our 2-D estimation method. Using our dedicated images, the precision of the estimation is improved by reducing the standard deviation of the lateral displacement error by a factor of 2 for speckle tracking and more than 3 with our method compared to using conventional images. Our method performs 7 times better than speckle tracking. Experimentally, the improvement in the case of a pure lateral translation reaches a factor of 7. Finally, the experimental feasibility of the 2-D displacement vector estimation is demonstrated on data acquired from a Cryogel phantom.  相似文献   

15.
We present a novel method for ultrasound backscatter image formation wherein lateral resolution of the target is obtained by using traveling shear waves to encode the lateral position of targets in the phase of the received echo. We demonstrate that the phase modulation as a function of shear wavenumber can be expressed in terms of a Fourier transform of the lateral component of the target echogenicity. The inverse transform, obtained by measurements of the phase modulation over a range of shear wave spatial frequencies, yields the lateral scatterer distribution. Range data are recovered from time of flight as in conventional ultrasound, yielding a B-mode-like image. In contrast to conventional ultrasound imaging, where mechanical or electronic focusing is used and lateral resolution is determined by aperture size and wavelength, we demonstrate that lateral resolution using the proposed method is independent of the properties of the aperture. Lateral resolution of the target is achieved using a stationary, unfocused, single-element transducer. We present simulated images of targets of uniform and non-uniform shear modulus. Compounding for speckle reduction is demonstrated. Finally, we demonstrate image formation with an unfocused transducer in gelatin phantoms of uniform shear modulus.  相似文献   

16.
Three-dimensional ultrasound images are blurred by the ultrasound pulse through the convolution between the 3-D tissue signal and the 3-D pulse. The blurring reduces the spatial resolution of the 3-D ultrasound images and, consequently, their diagnostic value. This paper presents a method for 3-D blind homomorphic deconvolution of medical 3-D ultrasound images to improve their spatial resolution. The blind estimate of the 3-D pulse is necessary because the pulse changes in spatial extent and frequency composition as it passes through the tissues and because the pulse is not separable in its spatial dimensions. The method was tested on a 3-D image of a phantom with anechoic spheres of known size in a uniform diffuse scattering matrix. The spheres were clearly better defined and had volumes much closer to the true volume in the deconvolved image than in the original image  相似文献   

17.
In adaptive ultrasound imaging, accurate estimation of the array covariance matrix is of great importance, and biases the performance of the adaptive beamformer. The more accurately the covariance matrix can be estimated, the better the resolution and contrast can be achieved in the ultrasound image. To this end, in this paper, we have used the forward-backward spatial averaging for array covariance matrix estimation, which is then employed in minimum variance (MV) weights calculation. The performance of the proposed forward-backward MV (FBMV) beamformer is tested on simulated data obtained using Field II. Data for two closely located point targets surrounded by speckle pattern are simulated showing the higher amplitude resolution of the FBMV beamformer in comparison to the forward-only (F-only) MV beamformers, without the need for diagonal loading. A circular cyst with a diameter of 6 mm and a phantom containing wire targets and two cysts with different diameters of 8 mm and 6 mm are also simulated. The simulations show that the FBMV beamformer, in contrast to the F-only MV, could estimate the background speckle statistics without the need for temporal smoothing, resulting in higher contrast for the FBMV-resulted image in comparison to the MV images. In addition, the effect of steering vector errors is investigated by applying an error of the sound speed estimate to the ultrasound data. The simulations show that the proposed FBMV beamformer presents a satisfactory robustness against data misalignment resulted from steering vector errors, outperforming the regularized F-only MV beamformer. These improvements are achieved without compromising the good resolution of the MV beamformer and resulted from more accurate estimation of the covariance matrix and consequently, the more accurate setting of the MV weights.  相似文献   

18.
The spatial Bessel filters are studied for their ability to reduce ultrasonic speckle and enhance the boundaries of regions of interest (ROI) in medical B-mode images. Using the concept of the heterogeneity index, a new parameter is defined to provide a quantitative measure of the edge visibility. It is hypothesized that this edge visibility parameter will be almost equal to unity if the ROI does not contain a boundary and greater than unity when the ROI contains a boundary. Analyses of 2 computer-synthesized images containing speckle and B-mode images of tissue-mimicking phantoms were carried out. The improvement in contrast and enhancement in edge visibility were estimated. In addition, parametric images containing a map of the edge visibility were created that showed clear boundaries. The quantitative measures strongly support the visual perception of contrast and enhanced edge visibility provided by the spatial Bessel filters. Results demonstrate the potential use of Bessel spatial filters in providing speckle reduction along with the ability to enhance the boundaries of regions of interest in B-mode images.  相似文献   

19.
We introduce a harmonic version of the short-lag spatial coherence (SLSC) imaging technique, called harmonic spatial coherence imaging (HSCI). The method is based on the coherence of the second-harmonic backscatter. Because the same signals that are used to construct harmonic B-mode images are also used to construct HSCI images, the benefits obtained with harmonic imaging are also obtained with HSCI. Harmonic imaging has been the primary tool for suppressing clutter in diagnostic ultrasound imaging, however secondharmonic echoes are not necessarily immune to the effects of clutter. HSCI and SLSC imaging are less sensitive to clutter because clutter has low spatial coherence. HSCI shows favorable imaging characteristics such as improved contrast-to-noise ratio (CNR), improved speckle SNR, and better delineation of borders and other structures compared with fundamental and harmonic B-mode imaging. CNRs of up to 1.9 were obtained from in vivo imaging of human cardiac tissue with HSCI, compared with 0.6, 0.9, and 1.5 in fundamental B-mode, harmonic B-mode, and SLSC imaging, respectively. In vivo experiments in human liver tissue demonstrated SNRs of up to 3.4 for HSCI compared with 1.9 for harmonic B-mode. Nonlinear simulations of a heart chamber model were consistent with the in vivo experiments.  相似文献   

20.
Real-time, three-dimensional (RT3D) ultrasound allows video frame rate volumetric imaging. The ability to acquire full three-dimensional (3-D) image data in real-time is particularly helpful for applications such as cardiac imaging, which require visualization of complex and dynamic 3-D anatomy. Volume rendering provides a method for intuitive graphical display of the 3-D image data, but capturing the RT3D echo data and performing the necessary processing to generate a volumetric image in real time poses a significant technical challenge. We present a data capture and rendering implementation that uses off-the-shelf components to real-time volume render RT3D ultrasound images. Our approach allowed live, interactive volume rendering of RT3D ultrasound scans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号