首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The multimedia transmission based real-time applications have posed a big challenge to wireless sensor networks (WSNs) where both reliability and timeliness need to be guaranteed at the same time, to support an acceptable Quality of Service (QoS). The existing real-time routing protocols, however, are not able to meet the QoS requirements of realtime applications because of the inherent resource constraint of sensor nodes and instability of wireless communication. Therefore, we propose a real-time scheme in this paper, including a QoS-aware routing protocol and a set of fault recovery mechanisms, for (m,k)-firm based real-time applications over WSNs. A local status indicator which is specially devised for (m,k)-firm stream, is used for intermediate nodes to monitor and evaluate their local conditions. The proposed routing protocol takes into account of packet deadline, node condition and remaining energy of next hop, to make optimal forwarding decision. Additionally, according to the stream QoS and node condition, the proposed fault recovery mechanisms are utilized for nodes to handle the congestion, link failure and void problems occurred during transmission and remain the desired reliability and timeliness requirements. The proposed scheme has been well studied and verified through simulations. The results have proved the efficiency of the proposed scheme in terms of high successful transmission ratio, small end-to-end delay and long lifetime of network.  相似文献   

2.

Recently, Internet is moving quickly toward the interaction of objects, computing devices, sensors, and which are usually indicated as the Internet of things (IoT). The main monitoring infrastructure of IoT systems main monitoring infrastructure of IoT systems is wireless sensor networks. A wireless sensor network is composed of a large number of sensor nodes. Each sensor node has sensing, computing, and wireless communication capability. The sensor nodes send the data to a sink or a base station by using wireless transmission techniques However, sensor network systems require suitable routing structure to optimizing the lifetime. For providing reasonable energy consumption and optimizing the lifetime of WSNs, novel, efficient and economical schemes should be developed. In this paper, for enhancing network lifetime, a novel energy-efficient mechanism is proposed based on fuzzy logic and reinforcement learning. The fuzzy logic system and reinforcement learning is based on the remained energies of the nodes on the routes, the available bandwidth and the distance to the sink. This study also compares the performance of the proposed method with the fuzzy logic method and IEEE 802.15.4 protocol. The simulations of the proposed method which were carried out by OPNET (Optimum Network performance) indicated that the proposed method performed better than other protocols such as fuzzy logic and IEEE802.15.4 in terms of power consumption and network lifetime.

  相似文献   

3.

Optimization of energy consumption in the batteries of a sensor node plays an essential role in wireless Sensor networks (WSNs). The longevity of sensor nodes depends on efficiency of energy utilization in batteries. Energy is consumed by sensor nodes in WSNs to perform three significant functions namely data sensing, transmitting and relaying. The battery energy in WSNs depletes mainly due to sampling rate and transmission rate. In the present work, the most important parameters affecting the longevity of network are indentified by modeling the energy consumption. The parameters are expressed as a fuzzy membership function of variables affecting the life time of network. Fuzzy logic is used at multiple levels to optimize the parameters. Network simulator-2 is used for experimentation purpose. The proposed work is also compared with the existing routing protocols like Enhanced Low Duty Cycle, Threshold Sensitive Energy Efficient Sensor Network and Distributed Energy Efficient Adaptive Clustering Protocol with Data Gathering. The proposed solution is found to be more energy efficient and hence ensures longer network lifetime.

  相似文献   

4.
In studies of wireless sensor networks (WSNs), routing protocols in network layer is an important topic. To date, many routing algorithms of WSNs have been developed such as relative direction-based sensor routing (RDSR). The WSNs in such algorithm are divided into many sectors for routing. RDSR could simply reduce the number of routes as compared to the convention routing algorithm, but it has routing loop problem. In this paper, a less complex, more efficient routing algorithm named as relative identification and direction-based sensor routing (RIDSR) algorithm is proposed. RIDSR makes sensor nodes establish more reliable and energy-efficient routing path for data transmission. This algorithm not only solves the routing loop problem within the RDSR algorithm but also facilitates the direct selection of a shorter distance for routing by the sensor node. Furthermore, it saves energy and extends the lifetime of the sensor nodes. We also propose a new energy-efficient algorithm named as enhanced relative identification and direction-based sensor routing (ERIDSR) algorithm. ERISDR combines triangle routing algorithm with RIDSR. Triangle routing algorithm exploits a simple triangle rule to determine a sensor node that can save more energy while relaying data between the transmitter and the receiver. This algorithm could effectively economize the use of energy in near-sensor nodes to further extend the lifetime of the sensor nodes. Simulation results show that ERIDSR get better performance than RDSR, and RIDSR algorithms. In addition, ERIDSR algorithm could save the total energy in near-sensor nodes more effectively.  相似文献   

5.
As considerable progress has been made in wireless sensor networks (WSNs), we can expect that sensor nodes will be applied in industrial applications. Most available techniques for WSNs can be transplanted to industrial wireless sensor networks (IWSNs). However, there are new requirements of quality of service (QoS), that is, real‐time routing, energy efficiency, and transmission reliability, which are three main performance indices of routing design for IWSNs. As one‐hop neighborhood information is often inadequate to data routing in IWSNs, it is difficult to use the conventional routing methods. In the paper, we propose the routing strategy by taking the real‐time routing performance, transmission reliability, and energy efficiency (TREE, triple R and double E) into considerations. For that, each sensor node should improve the capability of search range in the phase of data route discovery. Because of the increase of available information in the enlarged search range, sensor node can select more suitable relay node per hop. The real‐time data routes with lower energy cost and better transmission reliability will be used in our proposed routing guideline. By comparing with other routing methods through extensive experimental results, our distributed routing proposal can guarantee the diversified QoS requirements in industrial applications. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
Due to inherent issue of energy limitation in sensor nodes, the energy conservation is the primary concern for large‐scale wireless sensor networks. Cluster‐based routing has been found to be an effective mechanism to reduce the energy consumption of sensor nodes. In clustered wireless sensor networks, the network is divided into a set of clusters; each cluster has a coordinator, called cluster head (CH). Each node of a cluster transmits its collected information to its CH that in turn aggregates the received information and sends it to the base station directly or via other CHs. In multihop communication, the CHs closer to the base station are burdened with high relay load; as a result, their energy depletes much faster as compared with other CHs. This problem is termed as the hot spot problem. In this paper, a distributed fuzzy logic‐based unequal clustering approach and routing algorithm (DFCR) is proposed to solve this problem. Based on the cluster design, a multihop routing algorithm is also proposed, which is both energy efficient and energy balancing. The simulation results reinforce the efficiency of the proposed DFCR algorithm over the state‐of‐the‐art algorithms, ie, energy‐aware fuzzy approach to unequal clustering, energy‐aware distributed clustering, and energy‐aware routing algorithm, in terms of different performance parameters like energy efficiency and network lifetime.  相似文献   

7.
Internet of Things (IoT) has got significant popularity among the researchers' community as they have been applied in numerous application domains. Most of the IoT applications are implemented with the help of wireless sensor networks (WSNs). These WSNs use different sensor nodes with a limited battery power supply. Hence, the energy of the sensor node is considered as one of the primary constraints of WSN. Besides, data communication in WSN dissipates more energy than processing the data. In most WSNs applications, the sensed data generated from the same location sensor nodes are identical or time-series/periodical data. This redundant data transmission leads to more energy consumption. To reduce the energy consumption, a data reduction strategy using neural adaptation phenomenon (DR-NAP) has been proposed to decrease the communication energy in routing data to the BS in WSN. The neural adaptation phenomenon has been utilized for designing a simple data reduction scheme to decrease the amount of data transmitted. In this way, the sensor node energy is saved and the lifetime of the network is enhanced. The proposed approach has been implanted in the existing gravitational search algorithm (GSA)-based clustered routing for WSN. The sensed data are transmitted to CH and BS using DR-NAP. Real sensor data from the Intel Berkeley Research lab have been used for conducting the experiments. The experiment results show 47.82% and 51.96% of improvement in network lifetime when compared with GSA-based clustered routing and clustering scheme using Canada Geese Migration Principle (CS-CGMP) for routing, respectively.  相似文献   

8.
占亚波  涂潜  李俊  宗震 《电信科学》2023,39(2):83-91
为了实现输电线路监测的功耗低、寿命长、绿色发展的目的,提出大规模输电线路状态监测传感器网络周期性低功耗通信技术方案。依据网络中传感器网络组网特征以及节点运行状态转换特点,设置睡眠定时器,以周期性运行方式使传感器网络通信节点在初始化、睡眠、激活状态间转换,通信节点在输电线路状态监测数据无传递需求时进入睡眠状态,节省通信功耗;传感器网络汇聚(sink)节点利用梯度创建上行路由,通过源路由的方式创建下行路由,以跳数和剩余能量为依据进行上、下行路由数据分组传递,降低节点功耗,延长通信运行时间。实验显示,大规模输电线路状态监测传感器网络应用该技术方案后,通信功耗明显降低,运行时间明显延长,且不会影响监测传感器网络的数据传输性能,延长了监测传感器网络的使用寿命。  相似文献   

9.
Designing energy efficient communication protocols for wireless sensor networks (WSNs) to conserve the sensors' energy is one of the prime concerns. Clustering in WSNs significantly reduces the energy consumption in which the nodes are organized in clusters, each having a cluster head (CH). The CHs collect data from their cluster members and transmit it to the base station via a single or multihop communication. The main issue in such mechanism is how to associate the nodes to CHs and how to route the data of CHs so that the overall load on CHs are balanced. Since the sensor nodes operate autonomously, the methods designed for WSNs should be of distributed nature, i.e., each node should run it using its local information only. Considering these issues, we propose a distributed multiobjective‐based clustering method to assign a sensor node to appropriate CH so that the load is balanced. We also propose an energy‐efficient routing algorithm to balance the relay load among the CHs. In case any CH dies, we propose a recovery strategy for its cluster members. All our proposed methods are completely distributed in nature. Simulation results demonstrate the efficiency of the proposed algorithm in terms of energy consumption and hence prolonging the network lifetime. We compare the performance of the proposed algorithm with some existing algorithms in terms of number of alive nodes, network lifetime, energy efficiency, and energy population.  相似文献   

10.
Wireless sensor networks (WSNs) have been widely investigated in the past decades because of its applicability in various extreme environments. As sensors use battery, most works on WSNs focus on energy efficiency issues (e.g., local energy balancing problems) in statically deployed WSNs. Few works have paid attention to the global energy balancing problem for the scenario that mobile sensor nodes can move freely. In this paper, we propose a new routing protocol called global energy balancing routing protocol (GEBRP) based on an active network framework and node relocation in mobile sensor networks. This protocol achieves global energy efficiency by repairing coverage holes and replacing invalid nodes dynamically. Simulation and experiment results demonstrate that the proposed GEBRP achieves superior performance over the existing scheme. In addition, we analyze the delay performance of GEBRP and study how the delay performance is affected by various system parameters.Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
In recent years, due to fast development of wireless sensor networks (WSNs), the numbers of nodes are increasing, and their scope of applications is continuously expanding, including environmental monitoring, military and smart home applications. The power supply, memory and computing power of wireless sensor nodes are greatly hampered in WSNs so that the WSNs are classified as a task-oriented framework. This study focused on exploring problems caused by traffic congestion on the WSNs with a large amount of flow, such as packet loss, bandwidth reduction, and waste of energy on the sensor nodes. On the other hand, a cooperative strong node mechanism is presented and named as Cooperative Strong Node Mechanism, in which a threshold is set to determine whether the node traffic is over or not. When the load exceeds, the privilege of corresponding sensor nodes is upgraded so that it can command its child nodes to change the transmission path to distribute the traffic effectively. Furthermore, when the traffic exceeds preset overall network flow, new sensor nodes are added in the network to relieve the traffic. This novel proposed mechanism can not only increase network throughput and effectively prevent the occurrence from congestion problems, but is suitable for a variety of routing protocols.  相似文献   

12.
In wireless sensor networks (WSNs), clustering has been shown to be an efficient technique to improve scalability and network lifetime. In clustered networks, clustering creates unequal load distribution among cluster heads (CHs) and cluster member (CM) nodes. As a result, the entire network is subject to premature death because of the deficient active nodes within the network. In this paper, we present clustering‐based routing algorithms that can balance out the trade‐off between load distribution and network lifetime “green cluster‐based routing scheme.” This paper proposes a new energy‐aware green cluster‐based routing algorithm to preventing premature death of large‐scale dense WSNs. To deal with the uncertainty present in network information, a fuzzy rule‐based node classification model is proposed for clustering. Its primary benefits are flexibility in selecting effective CHs, reliability in distributing CHs overload among the other nodes, and reducing communication overhead and cluster formation time in highly dense areas. In addition, we propose a routing scheme that balances the load among sensors. The proposed scheme is evaluated through simulations to compare our scheme with the existing algorithms available in the literature. The numerical results show the relevance and improved efficiency of our scheme.  相似文献   

13.
For wireless sensor networks (WSNs), energy is a scarce resource. Due to limited battery resources, the energy consumption is the critical issue for the transmission as well as reception of the signals in the wireless communication. WSNs are infrastructure-less shared network demanding more energy consumption due to collaborative transmissions. This paper proposes a new cooperative opportunistic four level model for IEEE 802.15.4 wireless personal area network. The average per node energy consumption is observed merely about 0.17 mJ for the cooperative wireless communication which proves the proposed mechanism to be energy efficient. This paper further proposes four levels of cooperative data transmission from source to destination to improve network coverage with energy efficiency.  相似文献   

14.

Wireless sensor networks (WSNs) are spatially distributed devices to support various applications. The undesirable behavior of the sensor node affects the computational efficiency and quality of service. Fault detection, identification, and isolation in WSNs will increase assurance of quality, reliability, and safety. In this paper, a novel neural network based fault diagnosis algorithm is proposed for WSNs to handle the composite fault environment. Composite fault includes hard, soft, intermittent, and transient faults. The proposed fault diagnosis protocol is based on gradient descent and evolutionary approach. It detects, diagnose, and isolate the faulty nodes in the network. The proposed protocol works in four phases such as clustering phase, communication phase, fault detection and classification phase, and isolation phase. Simulation results show that the proposed protocol performs better than the existing protocols in terms of detection accuracy, false alarm rate, false positive rate, and detection latency.

  相似文献   

15.
Energy conservation and fault tolerance are two critical issues in the deployment of wireless sensor networks (WSNs). Many cluster‐based fault‐tolerant routing protocols have been proposed for energy conservation and network lifetime maximization in WSNs. However, these protocols suffer from high frequency of re‐clustering as well as extra energy consumption to tolerate failures and consider only some very normal parameters to form clusters without any verification of the energy sufficiency for data routing. Therefore, this paper proposes a cluster‐based fault‐tolerant routing protocol referred as CFTR. This protocol allows higher energy nodes to become Cluster Heads (CHs) and operate multiple rounds to diminish the frequency of re‐clustering. Additionally, for the sake to get better energy efficiency and balancing, we introduce a cost function that considers during cluster formation energy cost from sensor node to CH, energy cost from CH to sink, and another significant parameter, namely, number of cluster members in previous round. Further, the proposed CFTR takes care of nodes, which have no CH in their communication range. Also, it introduces a routing algorithm in which the decision of next hop CH selection is based on a cost function conceived to select routes with sufficient energy for data transfer and distribute uniformly the overall data‐relaying load among the CHs. As well, a low‐overhead algorithm to tolerate the sudden failure of CHs is proposed. We perform extensive simulations on CFTR and compare their results with those of two recent existing protocols to demonstrate its superiority in terms of different metrics.  相似文献   

16.
We derive a new investigation for the wireless sensor networks (WSNs) when the underlying sensor node distribution strategies have strong influence on event specific communication performance. In this paper, we inclusively evaluated eight sensor network distributions namely: normal, gamma, exponential, beta, generalized inverse Gaussian, poison, Cauchy and Weibull. We designed and illustrated our proposed model with these node distributions for data dissemination. Moreover, performance evaluation matrices like sense count, receive count and receive redundant count are also evaluated. Additionally, we emphasized over the routing protocol behavior for different distribution strategies in the deployed WSN framework. Finally, simulation analysis has been carried out to prove the validity of our proposal. However, routing protocol for WSNs seems intractable to the sensor node distribution strategies when varied from one to another in the scenario.  相似文献   

17.
Wireless sensor networks (WSNs) are widely used in large areas of applications; due to advancements in technology, very tiny sensors are readily available, and their usage reduces the cost. The mechanisms designed for wireless networks cannot be implied on networks with tiny nodes due to battery and computational constraints. Understanding the significance of security in WSNs and resource constraintness of tiny WSNs, we propose a node authentication mechanism for nodes in wireless sensor networks to avoid security attacks and establish secure communication between them. In the proposed mechanism, a base station (BS) generates a secret value and random value for each sensor node and stores at the node. The sensor node authenticates using secret value and random number. Random nonce ensures freshness, efficiency, and robustness. The proposed mechanism is lightweight cryptographic, hence requires very less computational, communication, and storage resources. Security analysis of the proposed mechanism could not detect any security attack on it, and the mechanism was found to incur less storage, communication, and computation overheads. Hence, the proposed mechanism is best suitable for wireless sensor networks with tiny nodes.  相似文献   

18.
The utilization of limited energy in wireless sensor networks (WSNs) is the critical concern, whereas the effectiveness of routing mechanisms substantially influence energy usage. We notice that two common issues in existing specific routing schemes for WSNs are that (i) a path may traverse through a specific set of sensors, draining out their energy quickly and (ii) packet retransmissions over unreliable links may consume energy significantly. In this paper, we develop an energy‐efficient routing scheme (called EFFORT) to maximize the amount of data gathered in WSNs before the end of network lifetime. By exploiting two natural advantages of opportunistic routing, that is, the path diversity and the improvement of transmission reliability, we propose a new metric that enables each sensor to determine a suitable set of forwarders as well as their relay priorities. We then present EFFORT, a routing protocol that utilizes energy efficiently and prolongs network lifetime based on the proposed routing metric. Simulation results show that EFFORT significantly outperforms other routing protocols. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
In this paper, a Tabu search based routing algorithm is proposed to efficiently determine an optimal path from a source to a destination in wireless sensor networks (WSNs). There have been several methods proposed for routing algorithms in wireless sensor networks. In this paper, the Tabu search method is exploited for routing in WSNs from a new point of view. In this algorithm (TSRA), a new move and neighborhood search method is designed to integrate energy consumption and hop counts into routing choice. The proposed algorithm is compared with some of the ant colony optimization based routing algorithms, such as traditional ant colony algorithm, ant colony optimization-based location-aware routing for wireless sensor networks, and energy and path aware ant colony algorithm for routing of wireless sensor networks, in term of routing cost, energy consumption and network lifetime. Simulation results, for various random generated networks, demonstrate that the TSRA, obtains more balanced transmission among the node, reduces the energy consumption and cost of the routing, and extends the network lifetime.  相似文献   

20.
Wireless sensor networks (WSNs) encounter a critical challenge of ‘Network Security’ due to extreme operational constraints. The origin of the challenge begins with the entry of worms in the wireless network. Just one infected node is enough to spread the worms across the entire network. The infected node rapidly infects the neighbouring nodes in an unstoppable manner. In this paper, a mathematical model is proposed based on epidemic theory. It is an improvement of the Susceptible-Infectious-Recovered-Susceptible (SIRS) and Susceptible-Exposed-Infectious-Susceptible (SEIS) model. We propose Susceptible-Exposed-Infectious-Recovered-Susceptible (SEIRS) model that overcomes the drawbacks of existing models. The proposed ameliorated model includes a finite communication radius and the associated node density. We obtain basic reproduction number which determines the local and global propagation dynamics of worm in the WSNs. Also, we deduce expression for threshold for node density and communication radius. We investigated the control mechanism against worm propagation. We compare the proposed model with various existing models and evaluate its performance on the basis of various performance metrics. The study confirms melioration in the vital aspects (security, network reliability, transmission efficiency, energy efficiency) for WSNs. The proposed SEIRS model provides an improved technique to restraint worms’ transmission in comparison to the existing models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号