首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
A variety of melaware articles were tested for the migration of melamine into the food simulant 3% w/v acetic acid as a benchmark, and into other food simulants, beverages and foods for comparison. The results indicate that the acidity of the food simulant plays a role in promoting migration, but not by as much as might have been anticipated, since 3% acetic acid gave migration values about double those obtained using water under the same time and temperature test conditions. In contrast, migration into the fatty food simulant olive oil was not detectable and at least 20-fold lower than with the aqueous food simulants. This was expected given the solubility properties of melamine and the characteristics of the melaware plastic. Migration levels into hot acidic beverages (apple juice, tomato juice, red-fruit tea and black coffee) were rather similar to the acetic acid simulant when the same time and temperature test conditions are used, e.g. 2?h at 70°C. However, migration levels into foods that were placed hot into melaware articles and then allowed to cool on standing were much lower (6–14 times lower) than if pre-heated food was placed into the articles and then maintained (artificially) at that high temperature in the same way that a controlled time–temperature test using simulants would be conducted. This very strong influence of time and especially temperature was manifest in the effects seen of microwave heating of food or beverage in the melaware articles. Here, despite the short duration of hot contact, migration levels were similar to simulants used for longer periods, e.g. 70°C for 2?h. This is rationalized in terms of the peak temperature achieved on microwave heating, which may exceed 70°C, counterbalancing the shorter time period held hot. There was also evidence that when using melaware utensils in boiling liquids, as for stovetop use of spatulas, the boiling action of circulating food/simulant can have an additional effect in promoting surface erosion, increasing the plastic decomposition and so elevating the melamine release.  相似文献   

2.
A broad range of fluorochemicals is used to impart oil and water barrier properties to paper and paperboard food packaging. Many of the fluorochemicals are applied to paper and paperboard as complex mixtures containing reaction products and by-products and unreacted starting materials. This work primarily focussed on the determination of seven perfluorocarboxylic acids (PFCAs) in two commercially available food contact papers: a di-perfluoro-alkyloxy-amino-acid and a perfluoroalkyl phosphate surfactant. In addition, the migration of the PFCAs into five food simulants from two commercial packages was evaluated. All seven PFCAs were detected in the range of 700–2220 µg kg?1 of paper, while three perfluoroalkyl sulphonates were under the LOD. Results from migration tests showed that migration depends on paper characteristics, time and food simulant. The percentage of migration after 10 days at 40°C ranged from 4.8% to 100% for the two papers and different food simulants.  相似文献   

3.
An analytical method based on ICP-MS was developed for the determination of Ti in food simulants (3% (w/v) aqueous acetic acid and 50% (v/v) aqueous ethanol). The method was used to determine the migration of Ti from nano-TiO2-PE films used for food packaging into food simulants under different temperature and migration time conditions. The maximum migration amounts into 3% (w/v) aqueous acetic acid were 1.4 ± 0.02, 6.3 ± 0.5 and 12.1 ± 0.2 μg kg?1 at 25, 70 and 100°C, respectively, while into 50% (v/v) aqueous ethanol, the maximum migration amounts were 0.5 ± 0.1, 0.6 ± 0.03 and 2.1 ± 0.1 μg kg?1 at 25, 70 and 100°C, respectively. Increasing the additive content in the film promoted migration of nanoparticles. The results indicated that the migration of nanoparticles might occur via dissolution from the surface and cut edges of the solid phase (film) into the liquid phase (food simulant).  相似文献   

4.
Migration of the potential endocrine disrupter, bisphenol A (BPA), from 31 polycarbonate (PC) baby bottles into aqueous food simulants was studied under real repetitive use, using a sensitive and fully validated liquid chromatographic method with fluorescence detection. Confirmation of the presence of BPA was performed by liquid chromatography–mass spectrometry (LC–MS). The effects of cleaning in a dishwasher or with a brush, sterilization with boiling water and the temperature of migration were examined. It was shown that temperature was the crucial factor for the migration of BPA from the plastic bottles to water. All samples released BPA in the concentration range 2.4–14.3 µg kg?1 when filled with boiled water and left at ambient temperature for 45 min. The decrease of BPA release in the sterilization water and in the food simulant over 12 cycles of use indicated that the hypothesis of polymer degradation in water is dubious. Estimated infantile dietary exposure, regarding the use of PC baby bottles, ranged between 0.2 and 2.2 µg kg?1 bw day?1, which is below the Tolerable Daily Intake of 50 µg kg?1 bw recently established by EFSA.  相似文献   

5.
Colloidal silver nanoparticles were prepared via chemical reduction using polyethylene glycol (PEG) as a reducing agent, stabiliser and solvent. Silver polyethylene nanocomposites were produced via two methods, namely: melt blending and layer-by-layer (LBL) deposition of silver nanoparticles onto a polyethylene film. The silver ion release from either melt-blended or LBL-deposited nanocomposites into a food simulant and apple juice during 30 days at 4°C and 40°C was determined by atomic absorption spectroscopy. The effects of incorporating or coating of silver nanoparticles, silver concentration, contact media, temperature and time on silver ion migration were evaluated using factorial design. The diffusion coefficients of silver ions into the food simulants and apple juice were calculated using the Miltz model. The results indicated that the production method of nanocomposite, silver concentration, temperature, time and contact media showed a significant effect (p < 0.05) on silver ion migration. The quantity of silver ion migration from the nanocomposites into the food simulants and apple juice was less than the cytotoxicity-level concentration (10 mg kg?1) in all cases over 30 days. The coating of silver nanoparticles, higher silver concentration in the nanocomposite, higher temperature and acidic property of contact liquid all promoted the silver ion release from the nanocomposite films. The migration of silver ions from nanocomposites obeyed first-order diffusion kinetics.  相似文献   

6.
The barrier effect of a silicon oxide (SiO x ) coating on the inner surface of PET bottles, in terms of the ability to reduce the migration of post-consumer compounds from the PET bottle wall into food simulants (3% acetic acid and 10% ethanol), was investigated. The barrier effect was examined by artificially introducing model substances (surrogates) into the PET bottle wall to represent a worst-case scenario. Test bottles with three different spiking levels up to ~1000 mg kg?1 per surrogate were blown and coated on the inner surface. The SiO x -coated bottles and the non-coated reference bottles were filled with food simulants. From the specific migration of the surrogates with different bottles wall concentrations, the maximum surrogate concentrations in the bottle wall corresponding to migration of 10 µg l?1 were determined. It was shown that the SiO x coating layer is an efficient barrier to post-consumer compounds. The maximum bottle wall concentrations of the surrogates corresponding to migration of 10 µg l?1 were in the range of 200 mg kg?1 for toluene and ~900 mg kg?1 for benzophenone. Consequently, the SiO x coating allows use of conventionally recycled post-consumer PET flakes (without a super-clean recycling process) for packaging aqueous and low alcoholic foodstuffs (under cold-fill conditions) and protects food from migration of unwanted contaminants from post-consumer PET.  相似文献   

7.
ABSTRACT

Copper (Cu) metal and alloys are used in cookware and other food contact surfaces due to their desirable properties for various applications. However, Cu metal can ionise and subsequently transfer to food and beverages under certain conditions. Here, we tested how pH and temperature affected Cu release kinetics using model systems utilising Cu metal foil and commercially available copperware. Cu foil and copperware were exposed to food simulants composed of 3% (w:w) aqueous solutions of citric acid, malic acid, acetic acid, or deionised (DI) water at temperatures ranging from 4°C to 60°C. An additional pilot experiment tested how simulated long-term cleaning affected subsequent Cu release from lined and unlined copperware to 3% citric acid. Food simulants were then analysed by ICP-MS for total Cu. After 180 min, incubation of Cu metal foil with acid-containing food simulants at 4°C resulted in Cu release ranging from 8.7 - 14.0 µg cm?2, while 21.5–38.1 µg cm?2 was released at 60°C. In contrast, Cu transfer from metal foil to DI water was relatively low, with <0.6 µg cm?2 released after 180 min at 60°C. With citric acid food simulant, lined copperware released between 0.6 and 3.0 µg Cu cm?2 over 180 min at the set temperatures, while unlined copperware released approximately 25–45 fold higher amounts of Cu (26.9–74.6 µg cm?2) over this same time period. In contrast, use of DI water food simulant resulted in Cu release of <0.1 µg cm?2 for the lined copperware and <2 µg cm?2 for the unlined type. No significant effect of simulated long-term cleaning on Cu release from copperware was observed. These data indicate that Cu release is affected by temperature and pH, and that specific steps can be taken to limit Cu metal release from food contact surfaces to foods and beverages.  相似文献   

8.
ABSTRACT

Paper is one of the most commonly used food packaging materials. During the production of packaging paper, it is possible for trace amounts of heavy metals to be incorporated as contaminants. These could migrate into food when packaging paper (food contact paper) is used for cooking, storing and eating. The aim of this study was to determine the migration of lead (Pb) and arsenic (As) from food contact paper into a food simulant and then to assess human safety through the estimated daily intake (EDI) with consumption factor. Migration tests were conducted for 310 samples using 4% acetic acid as a food simulant at 25°C for 10 min and at 95°C for 30 min. Concentrations of Pb and As in a food simulant were quantified by inductively coupled plasma mass spectrometry. LODs for Pb and As were 0.002 and 0.005 µg L?1, respectively. The migration of Pb from food contact paper ranged from not detected (ND) to 17.5 μg L?1 at 25°C for 10 min and from 0.10 to 25.6 μg L?1 at 95°C for 30 min while As ranged from ND to 0.44 μg L?1 at 25°C for 10 min and from ND to 0.87 μg L?1 at 95°C for 30 min. The migration of Pb and As determined in this study confirm that the human exposure was within safe levels based on the EDI of food contact paper compared with the provisional tolerable weekly intake for Pb of 25 μg kg?1 bw and for As of 15 μg kg?1 bw.  相似文献   

9.
Migration levels of acetyl tributyl citrate (ATBC) plasticiser from polyvinyl chloride (PVC) film into the European Union specified aqueous food simulants (distilled water, 3% w/v acetic acid and 10% v/v ethanol) were monitored as a function of time. Migration testing was carried out at 40°C for 10 days. Determination of the analyte was performed by applying an analytical methodology based on surfactant (Triton X-114) mediated extraction prior to gas chromatographic-flame ionisation detection. PVC cling film used was subjected to ionising treatment with a [60Co] source, as well as to electron-beam irradiation at doses equal to 5, 15 and 25 kGy, with the aim to compare the effect of type and dose of radiation on the specific migration behaviour of PVC. Equilibrium concentrations of acetyl tributyl citrate into the aqueous solvents covered the ranges 173–422?µg?l?1 and 296–513?µg?l?1 for gamma- and electron-irradiated PVC, respectively. Hence, e-beam irradiation resulted in significantly higher ATBC migration compared with gamma treatment. The highest extraction efficiency of the 10% ethanol solution was common in both gamma and e-beam treatments; distilled water demonstrated the lowest migration. Gamma-irradiation at intermediate doses up to 5 kGy produced no statistically significant (p?>?0.05) effect on ATBC migration into all three aqueous simulants; however, this does not apply for high-energy electrons. Both ionising treatments were similar in that they resulted in statistically significant (p?<?0.05) differences in plasticiser migrating amounts between non-irradiated and irradiated at doses of 15 and 25 kGy samples. Gamma-radiation did not affect the kinetics of plasticiser migration. On the contrary, electron-beam radiation produced shorter equilibration times for all food-simulating solvents tested at 40°C. The above values regarding ATBC migration into aqueous food simulants are far below the European Union restriction (1?mg?kg?1 body weight) for both types of ionising radiation. Thus, PVC cling film may be used in food irradiation applications in contact with aqueous foodstuffs.  相似文献   

10.
Methylmercury intake for adult males of twelve provinces in China was estimated by means of the 2007 Chinese Total Diet Study. Methylmercury levels were measured in twelve food groups of each province of four regions and was only found in the aquatic food groups. The range for methylmercury contents of aquatic foods was 3.29–31.60?µg?kg?1, being 50–87% of total mercury. Methylmercury intakes from aquatic foods for adult males of twelve provinces ranged from 0.003 to 0.138?µg?kg?1?bw?week?1 with average of 0.041?µg?kg?1?bw?week?1, which were estimated according to methylmercury contents and corresponding aquatic food consumption. Methylmercury intakes for the Chinese population were far below the corresponding provisional tolerable weekly intake (PTWI), which was established by the Joint FAO/WHO Expert Committee on Food Additives (JECFA). Consequently, there was little health risk from methylmercury exposure for the average Chinese population.  相似文献   

11.
An HPLC method with fluorescence detection has been developed and validated for the quantification of six fluorescent whitening agents (FWA) in plastic beverage cups after extraction and in food simulants after migration at 70°C for 2 h. The sensitivity of the method was high with LODs ranging from 0.053 to 0.251 μg kg?1 and LOQs from 0.107 to 0.504 μg kg?1. Accuracy and precision were highly acceptable, with recoveries greater than 82% and RSDs (%) below 16%. The expanded combined uncertainty was found to be less than 23% for the measurements of all studied FWAs. In extracting the analytes from food contact materials (FCM), accelerated solvent extraction (ASE) and Soxhlet extraction were applied using ethanol as the extraction solvent. The results obtained for FWA in 10 different food plastic cups, made from different polymers, were compared. The ASE technique proved to be faster, more effective and efficient than Soxhlet extraction. Migration tests with official food simulants from Regulation (EU) No 10/2011 showed that the substances studied could potentially migrate using the selected migration conditions. The most pronounced effect was observed in case of simulant D1 (50% w/v ethanol in water). The analytical method proved to be a simple, fast, sensitive and reliable tool for the simultaneous quantification of six of the most used FWAs in both FCM extracts and food simulants after migration experiments.  相似文献   

12.
An experimental nanosilver-coated low-density polyethylene (LDPE) food packaging was incubated with food simulants using a conventional oven and tested for migration according to European Commission Regulation No. 10/2011. The commercial LDPE films were coated using a layer-by-layer (LbL) technique and three levels of silver (Ag) precursor concentration (0.5%, 2% and 5% silver nitrate (AgNO3), respectively) were used to attach antimicrobial Ag. The experimental migration study conditions (time, temperature and food simulant) under conventional oven heating (10 days at 60°C, 2 h at 70°C, 2 h at 60°C or 10 days at 70°C) were chosen to simulate the worst-case storage period of over 6 months. In addition, migration was quantified under microwave heating. The total Ag migrant levels in the food simulants were quantified by inductively coupled plasma-atomic emission spectroscopy (ICP-AES). Mean migration levels obtained by ICP-AES for oven heating were in the range 0.01–1.75 mg l?1. Migration observed for microwave heating was found to be significantly higher when compared with oven heating for similar temperatures (100°C) and identical exposure times (2 min). In each of the packaging materials and food simulants tested, the presence of nanoparticles (NPs) was confirmed by scanning electron microscopy (SEM). On inspection of the migration observed under conventional oven heating, an important finding was the significant reduction in migration resulting from the increased Ag precursor concentration used to attach Ag on the LDPE LbL-coated films. This observation merits further investigation into the LbL coating process used, as it suggests potential for process modifications to reduce migration. In turn, any reduction in NP migration below regulatory limits could greatly support the antimicrobial silver nanoparticle (AgNP)-LDPE LbL-coated films being used as a food packaging material.  相似文献   

13.
In Mexico, maize tortillas are consumed on a daily basis, leading to possible aflatoxin exposure. In a survey of 396 2-kg samples, taken over four sampling days in 2006 and 2007 from tortilla shops and supermarkets in Mexico City, aflatoxin levels were quantified by HPLC. In Mexico, the regulatory limit is 12?µg?kg?1 total aflatoxins for maize tortillas. In this survey, 17% of tortillas contained aflatoxins at levels of 3–385?µg?kg?1 or values below the limit of quantification (<LOQ) and, of these, 13% were >12?µg?kg?1 and 87% were below the regulatory limit. Average aflatoxin concentrations in 56 contaminated samples were: AFB1 (12.1?µg?kg?1); AFB2 (2.7?µg?kg?1); AFG1 (64.1?µg?kg?1) and AFG2 (3.7?µg?kg?1), and total AF (20.3?µg?kg?1).  相似文献   

14.
Poly(ethylene terephthalate) (PET) bottles are widely used for beverages. Knowledge about the migration of organic compounds from the PET bottle wall into contact media is of interest especially when post-consumer recyclates are introduced into new PET bottles. Using migration theory, the migration of a compound can be calculated if the concentration in the bottle wall is known. On the other hand, for any given specific migration limit or maximum target concentration for organic chemical compounds in the bottled foodstuffs, the maximum allowable concentrations in the polymer C P,0 can be calculated. Since a food simulant cannot exactly simulate the real migration into the foodstuff or beverages, a worse-case simulation behaviour is the intention. However, if the migration calculation should not be too overestimative, the polymer-specific kinetic parameter for migration modelling, the so-called A P value, should be established appropriately. One objective of the study was the kinetic determination of the specific migration behaviour of low molecular weight compounds such as solvents with relatively high diffusion rates and, therefore, with high migration potential from the PET bottle wall into food simulants in comparison with real beverages. For this purpose, model contaminants were introduced into the bottle wall during pre-form production. The volatile compounds toluene and chlorobenzene were established at concentrations from about 20–30 mg kg?1 to 300–350 mg kg?1. Phenyl cyclohexane was present at concentrations of 35, 262 and 782 mg kg?1, respectively. The low volatile compounds benzophenone and methyl stearate have bottle wall concentrations of about 100 mg kg?1 in the low spiking level up to about 1000 mg kg?1 in the highly spiked test bottle. From these experimental data, the polymer specific parameters (A P values) from mathematical migration modelling were derived. The experimental determined diffusing coefficients were determined, calculated and compared with literature data and an A P′ value of 1.0 was derived thereof for non-swelling food simulants like 3% acetic acid, 10% ethanol or iso-octane. For more swelling condition, e.g. 95% ethanol as food simulant, an A P′ value of 3.1 seems to be suitable for migration calculation. In relation to PET recycling safety aspects, maximum concentrations in the bottle wall were established for migrants/contaminants with different molecular weights, which correspond with a migration limit of 10 μg kg?1. From the experimental data obtained using food simulants and in comparison with beverages, the most appropriate food simulant for PET packed foods with a sufficient but not too overestimative worse-case character was found to be 50% ethanol. In addition, it can be shown that mass transport from PET is generally controlled by the very low diffusion in the polymer and, as a consequence, partitioning coefficients (K P/F values) of migrants between the polymer material and the foodstuff do not influence the migration levels significantly. An important consequence is that migration levels from PET food-contact materials are largely independent from the nature of the packed food, which on the other hand simplifies exposure estimations from PET.  相似文献   

15.
To evaluate the potential public health risk of ethyl carbamate (EC), EC exposure from fermented foods and beverages for Hong Kong population was estimated. In 276 samples analysed, EC was detected (limit of detection (LOD) at 0.4?µg?kg?1) in 202 samples (73%), with higher levels in fermented red bean curd (150–650?µg?kg?1) and yellow wine (140–390?µg?kg?1), while low or non-detected (ND) in preserved vegetables (ND–10?µg?kg?1) and fermented tea (ND–15?µg?kg?1). The estimated dietary exposure from all fermented foods and beverages was 8.27?ng?kg?1?bw?day?1, while exposure excluding alcoholic beverages was 5.42?ng?kg?1?bw?day?1, with calculated margins of exposure (MOEs) at 3.6?×?104 and 5.5?×?104 respectively. The risk of adverse health effects was low for the average population but higher (MOE?of?103) for high consumers of alcoholic beverages especially habitual drinkers of alcoholic types with high EC contents.  相似文献   

16.
A method was developed for the simultaneous determination of melamine, ammeline, ammelide, and cyanuric acid in egg using gas chromatography-tandem mass spectrometry (GC-MS/MS). The samples were first extracted by the solution of diethylamine–water–acetonitrile (10:40:50, v/v/v). Clean-up employed an ‘On Guard II’ RP cartridge, and the dried elute was derivatised using bis-(trimethylsilyl)trifluoroacetamide (BSTFA) with 1% trimethylchlorosilane (TMCS). Derivatised samples were analysed by GC-MS/MS using multiple-reaction monitoring (MRM) with 13C3-15N3-labelled melamine and cyanuric acid as internal standards. Blank samples of egg were spiked with the four analytes at concentration level of 0.1, 0.5, 1.0 mg kg?1, and the intra-day and inter-day recoveries were in the range 75.7–122.5% with the relative standard deviation (RSD) from 2.6% to 22.8%. Decision limits (CCα, α = 0.01) for melamine, ammeline, ammelide, and cyanuric acid in egg samples and milk powder were 3.5–5.9 and 2.5 to 3.8 µg kg?1, and the detection capabilities (CCβ, β = 0.05) were 4.9–8.4 and 3.6–9.5 µg kg?1, respectively. The method was successfully applied to egg samples and milk products as well. Satisfactory results were obtained as part of the 2009 European Union melamine proficiency test.  相似文献   

17.
The results of a study on the analytical identification and quantification of migration of chemicals from plastics baby bottles found in the European Union market made of materials that are now present as substitutes for polycarbonate (PC) are reported. A total of 449 baby bottles with a focus on first age or sets of bottles were purchased from 26 European Union countries, Canada, Switzerland and the USA. From this collection, which contained several duplicates, a total of 277 baby bottles were analysed. The materials included different types of plastic such as PC, polyamide (PA), polyethersulphone (PES), polypropylene (PP), but also silicone, and from the United States a co-polyester marketed under the trade name Tritan?. The bottles were subjected to the conventional migration test for hot fill conditions, i.e. 2?h at 70°C. The simulant used was that specified in European Union legislation (2007/19/EC) for milk, i.e. 50% ethanol. In a first phase 1, migration was conducted since the scope of this investigation was a screening rather than a true compliance testing check. Second and third migrations were performed on selected articles when migrated substances exceeded limits specified in the legislation. In order to verify some materials, a portion of the bottle was cut to run an FT-IR fingerprint to confirm the nature of the polymer. The migration solutions in general showed a low release of substances. Results showed that bottles made of PP and silicones showed a greater number of substances in the migration solutions and in greater quantity. Chemicals from PP included alkanes, which could be found in >65% of the bottles at levels up to 3500?µg?kg?1; and benzene derivatives in 17% of the baby bottles and found at levels up to 113?µg?kg?1. Some substances were found on a regular basis such as plasticisers, esters and antioxidants (e.g. tris(2,4-di-tert-butylphenyl)phosphate, known as Irgafos 168. Some substances found were not included in the Community positive list, which means that those should not be found even in the first migration. Such substances included 2,6-di-isopropylnaphthalene (DIPN), found in 4% of the bottles at levels up to 25?µg?kg?1, 2,4-di-tert-butyl phenol (in 90% of the bottles at levels up 400?µg?kg?1). Moreover, bisphenol A (BPA) was detected and quantified in baby bottles made of PA, but limited to one brand and model specific (but labelled BPA free). Results for baby bottles made of silicone also indicated the presence of components, e.g. potentially coming from inks (benzophenone, diisopropyl naphtahalene – DIPN, which could come for example from the presence of instruction leaflets in the bottles). In the case of silicone, phthalates were also found in relevant concentrations, with levels for DiBP and DBP from the first migration test of 50–150?µg?kg?1 and DEHP at levels 25–50?µg?kg?1.  相似文献   

18.
In 2011, the European Union prohibited the production of polycarbonate (PC) baby bottles due to the toxic effects of the PC monomer bisphenol-A. Therefore, baby bottles made of alternative materials, e.g. polypropylene (PP) or polyethersulphone (PES), are currently marketed. The principal aim of the study was the identification of major compounds migrating from baby bottles using a liquid–liquid extraction followed by GC/MS analysis. A 50% EtOH in water solution was selected as a simulant for milk. After sterilisation of the bottle, three migration experiments were performed during 2 h at 70°C. A non-targeted liquid–liquid extraction with ethyl acetate–n-hexane (1:1) was performed on the simulant samples. Identification of migrants from 24 baby bottles was done using commercially available WILEY and NIST mass spectra libraries. Differences in the migrating compounds and their intensities were observed between the different types of plastics, but also between the same polymer from a different producer. Differences in the migration patterns were perceived as well between the sterilisation and the migrations and within the different migrations. Silicone, Tritan? and PP exhibited a wide variety of migrating compounds, whereas PES and polyamide (PA) showed a lower amount of migrants, though sometimes in relatively large concentrations (azacyclotridecan-2-one up to 250 µg kg?1). Alkanes (especially in PP bottles), phthalates (dibutylphthalate in one PP bottle (±40 µg kg?1) and one silicone bottle (±25 µg kg?1); diisobutylphthalate in one PP (±10 µg kg?1), silicone (up to ±80 µg kg?1); and Tritan? bottle (±30 µg kg?1)), antioxidants (Irgafos 168, degradation products of Irganox 1010 and Irganox 1076), etc. were detected for PP, silicone and Tritan? bottles. Although the concentrations were relatively low, some compounds not authorised by European Union Regulation No. 10/2011, such as 2,4-di-tert-butylphenol (10–100 µg kg?1) or 2-butoxyethyl acetate (about 300 µg kg?1) were detected. Migrating chemicals were identified as confirmed (using a standard) or as tentative (further confirmation required).  相似文献   

19.
Migration experiments with small sheets cut out from ovenable PET trays were performed in two-sided contact with 3% acetic acid as food simulant at various temperatures. The fraction of diffusible antimony (Sb) was estimated to be 62% in the PET sample under study. Apparent diffusion coefficients of Sb in PET trays were determined experimentally. Measurement of migration between 20 and 150°C yielded a linear Arrhenius plot over a wide temperature range from which the activation energy (E a) of 188?±?36?kJ?mol?1 and the pre-exponential factor (D 0) of 3.6?×?1014?cm2?s?1 were determined for diffusing Sb species. E a was similar to previously reported values for PET bottles obtained with a different experimental approach. E a and D 0 were applied as model parameters in migration modelling software for predicting the Sb transfer in real food. Ready meals intended for preparation in a baking oven were heated in the PET trays under study and the actual Sb migration into the food phase was measured by isotope dilution ICP-MS. It was shown that the predictive modelling reproduces correctly experimental data.  相似文献   

20.
A pressurized liquid extraction (PLE) method was developed for melamine analysis in pet foods. The PLE method which utilized an accelerated solvent extraction (ASE®) system was also compared with sonication and polytron extraction methods. The parameters for the optimized PLE method were temperature (75?°C for wet pet food, 125?°C for dry pet food), pressure (1,500 psi), static time (10 min), flush volume (40%), purge time (1 min), and number of cycles (1). Recoveries obtained by PLE method were significantly higher (P?≤?0.05) than those of sonication and polytron methods for dry pet food samples. For the analysis of adulterated pet foods, PLE resulted in the highest melamine content followed by sonication and polytron. Using PLE, samples fortified with melamine at 2.5 and 100 mg kg?1 resulted in recoveries ranging from 55% to 90% for wet samples and from 90% to 116% for dry samples. Low recovery rate from wet samples at low spike level (2.5 mg kg?1) may have been caused by co-aggregation of polysaccharide and protein with melamine due to low pH during solid-phase extraction cleanup. Limit of detection and limit of quantification values were 0.5 (mg kg?1) and 1.0 (mg kg?1) for dry samples. Overall, PLE had the best extraction efficiency compared to sonication and polytron, proving PLE to be a useful tool for melamine analysis of pet foods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号