首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fatigue cracking resistance of sintered steel as a function of temperature is characterized by crack growth rate vs the stress intensity range, ΔK. The stress ratio effects on fatigue crack propagation (FCP) are investigated from room temperature to 300 °C. The crack closure effects on FCP are evaluated by both theoretical and experimental approaches. We found that the crack closure cannot be fully responsible for the observed increase of fatigue resistance with low stress ratio. Experimental results support that both K max and ΔK control near-threshold crack growth. Fatigue crack resistance at high ΔK regime decreases with temperature. The apparent increase of fatigue resistance at the near-threshold regime at elevated temperatures might be attributed to microcrack toughening.  相似文献   

2.
The corrosion fatigue crack propagation behavior of a squeeze-cast Al-Si-Mg-Cu aluminum alloy (AC8A-T6), which had been precracked in air, was investigated at testing frequencies of 0.1, 1, 5, and 10 Hz under a stress ratio (R) of 0.1. Compact-toughness specimens were precracked about 6 mm in air prior to the corrosion fatigue test in a 3 pct saline solution. At some near-threshold conditions, these cracks propagated faster than would be predicted by the mechanical driving force. This anomalous corrosion fatigue crack growth was affected by the initial stress-intensity-factor range (ΔK i), the precracking conditions, and the testing frequency. The initial crack propagation rate was as much as one order of magnitude higher than the rate for the same conditions in air. This rapid rate was associated with preferential propagation along the interphase interface in the eutectic structure. It is believed that a chemical reaction at the crack tip and/or hydrogen-assisted cracking produced the phenomenon. Eventual retardation and complete arrest of crack growth after this initial rapid growth occurred within a short period at low ΔK values, when the testing frequency was low (0.1 and 1 Hz). This retardation was accompanied by corrosion product-induced crack closure and could be better explained by the contributory stress-intensity-factor range (ΔK cont) than by the effective stress-intensity-factor range (ΔK eff).  相似文献   

3.
Fatigue crack growth mechanisms of long cracks through fields with low and high residual stresses were investigated for a common structural aluminum alloy, 6061-T61. Bulk processing residual stresses were introduced in the material by quenching during heat treatment. Compact tension (CT) specimens were fatigue crack growth (FCG) tested at varying stress ratios to capture the closure and K max effects. The changes in fatigue crack growth mechanisms at the microstructural scale are correlated to closure, stress ratio, and plasticity, which are all dependent on residual stress. A dual-parameter ΔKK max approach, which includes corrections for crack closure and residual stresses, is used uniquely to connect fatigue crack growth mechanisms at the microstructural scale with changes in crack growth rates at various stress ratios for low- and high-residual-stress conditions. The methods and tools proposed in this study can be used to optimize existing materials and processes as well as to develop new materials and processes for FCG limited structural applications.  相似文献   

4.
Fatigue crack propagation in high-strength A286 steel was studied by comparing crack growth rates determined from: (1) conventional long-crack propagation tests, (2) closure-free long-crack tests at constant Kmax, and (3) small-crack propagation tests. Small-crack growth rates were measured by following the growth of surface cracks in samples cycled from near-zero stress to 0.5 or 0.8σy. While most of the surface cracks became dormant shortly after nucleation, some grew into long cracks, and some of these propagated at cyclic stress intensities below the long-crack threshold, ΔKth (or ΔK th eff , the threshold cyclic stress intensity after crack closure effects have been removed). Surface cracks grew more rapidly than long cracks at the same ΔKor ΔKeff. The small-crack effect disappeared when the crack-tip plastic zone size became greater than the grain size. The results show that the absence of crack closure is only one of several factors that influence short-crack growth in A286 steel. Both peak stress and microstructural effects are important. Microstructural effects are apparently responsible for subthreshold crack growth; the cracks that grow at ΔK < ΔK th eff form and grow in statistically weak regions of the microstructure.  相似文献   

5.
The influences of microstructure and deformation mode on inert environment intrinsic fatigue crack propagation were investigated for Al-Li-Cu-Mg alloys AA2090, AA8090, and X2095 compared to AA2024. The amount of coherent shearable δ (Al3Li) precipitates and extent of localized planar slip deformation were reduced by composition (increased Cu/Li in X2095) and heat treatment (double aging of AA8090). Intrinsic growth rates, obtained at high constantK max to minimize crack closure and in vacuum to eliminate any environmental effect, were alloy dependent;da/dN varied up to tenfold based on applied ΔK or ΔK/E. When compared based on a crack tip cyclic strain or opening displacement parameter (ΔK/(σys E)1/2), growth rates were equivalent for all alloys except X2095-T8 which exhibited unique fatigue crack growth resistance. Tortuous fatigue crack profiles and large fracture surface facets were observed for each Al-Li alloy independent of the precipitates present, particularly δ, and the localized slip deformation structure. Reduced fatigue crack propagation rates for X2095 in vacuum are not explained by either residual crack closure or slip reversibility arguments; the origin of apparent slip band facets in a homogeneous slip alloy is unclear. Better understanding of crack tip damage accumulation and fracture surface facet crystallography is required for Al-Li alloys with varying slip localization.  相似文献   

6.
Fatigue crack growth studies have been conducted on a two-phase alloy with a nominal composition of Ti-46.5Al-3Nb-2Cr-0.2W (at. pct), heat treated to produce duplex and lamellar microstructures. Fatigue crack growth tests were conducted at 23 °C using computer-controlled servohydraulic loading at a cyclic frequency of 20 Hz. Several test methods were used to obtain fatigue crack growth rate data, including decreasing-load-range-threshold, constant-load-range, and constant-K max increasing-load-ratio crack growth control. The lamellar microstructure showed substantial improvement in crack growth resistance and an increase in the threshold stress intensity factor range, ΔK th , when compared with the behavior of the duplex microstructure. The stress ratio had a significant influence on crack growth behavior in both microstructures, which appeared to be a result of roughness-induced crack closure mechanisms. Fractographic characterization of fatigue crack propagation modes indicated a highly tortuous crack path in the fully lamellar microstructure, compared to the duplex microstructure. In addition, limited shear ligament bridging and secondary cracking parallel to the lamellar interfaces were observed in the fully lamellar microstructure during fatigue crack propagation. These observations were incorporated into a model that analyzes the contribution of intrinsic vs extrinsic mechanisms, such as shear ligament bridging and roughness-induced crack closure, to the increased fatigue crack growth resistance observed for the fully lamellar microstructure.  相似文献   

7.
Fatigue crack growth studies have been conducted on a two-phase alloy with a nominal composition of Ti−46.5Al−3Nb−2Cr−0.2W (at. pct), heat treated to produce duplex and lamellar microstructures. Fatigue crack growth tests were conducted at 23°C using computer-controlled servohydraulic loading at a cyclic frequency of 20 Hz. Several test methods were used to obtain fatigue crack growth rate data, including decreasing-load-range-threshold, constant-load-range, and constant-K max increasing-load-ratio crack growth control. The lamellar microstructure showed substantial improvement in crack growth resistance and an increase in the threshold stress intensity factor range, ΔK th, when compared with the behavior of the duplex microstructure. The stress ratio had a significant influence on crack growth behavior in both microstructures, which appeared to be a result of roughness-induced crack closure mechanisms. Fractographic characterization of fatigue crack propagation modes indicated a highly tortuous crack path in the fully lamellar microstructure, compared to the duplex microstructure. In addition, limited shear ligament bridging and secondary cracking parallel to the lamellar interfaces were observed in the fully lamellar microstructure during fatigue crack propagation. These observations were incorporated into a model that analyzes the contribution of intrinsic vs extrinsic mechanisms, such as shear ligament bridging and roughness-induced crack closure, to the increased fatigue crack growth resistance observed for the fully lamellar microstructure. S.J. BALSONE, formerly with the United States Air Force, Wright Laboratory, Materials Directorate  相似文献   

8.
High frequency (123 Hz) fatigue crack propagation studies were conducted under rising ΔK conditions (R-ratio = 0.22) on single edge notch specimens of austenitic stainless steel (type 316L) that contained an annealed precrack. Tests were conducted in near neutral (pH 5.5) solutions of 1 M NaCl and 1 M NaCl + 0.01 M Na2S2O3 under potentiostatically controlled conditions and in desiccated air. Attention was directed primarily to the near threshold behavior and the stage I (crystallographic) region of cracking. Good mixing between the crack solution and bulk solution was obtained and crack retardation and arrest effects, due to surface roughness induced closure, were minimized at high anodic potentials by electrochemical erosion. Thermodynamic considerations showed that hydrogen played no role in fatigue crack propagation. Analysis of the results in terms of the estimated effective cyclic stress intensity, ΔK eff, showed a systematic effect of potential on the average crack growth increment per cycle,da/dN. Anodic dissolution processes were considered to make an insignificant contribution toda/dN. A model was proposed for stage I fatigue cracking based on the effect of oxide nucleation rate on restricted slip reversal. The essential features of the model were considered to be relevant to cracking in aqueous environments and in desiccated air.  相似文献   

9.
Near threshold fatigue crack growth behavior of a high strength steel under different tempered conditions was investigated. The important aspect of the study is to compare the crack growth behavior in terms of the closure-free component of the threshold stress intensity range, ΔK th,eff While a systematic variation in the absolute threshold stress intensity range with yield strength was observed, the trend in the intrinsic ΔK th or ΔK th,eff exhibited a contrasting behavior. This has been explained as due to the difference in fracture modes during near threshold crack growth at different temper levels. It is shown that in a high strength and high strain hardening microstructure, yielding along crystallographic slip planes is difficult and hence it exhibited a flat transgranular fracture. In a steel with low strain hardening characteristics and relatively low strength, a tendency to crystallographic planar slip is observed consequently resulting in high ΔK th. Occurrence of a predominantly intergranular fracture is shown to reduce intrinsic ΔK th drastically and increase crack growth rates. Also shown is that crack closure can occur in high strength steels under certain fracture morphologies. A ‘transgranular planar slip’ during the inception of a ‘microstructure sensitive’ crack growth is essential to promote intergranular and faceted fracture. The occurrence of a maximum in the fraction of intergranular fracture during threshold crack growth corresponds to the ΔK value at which the cyclic plastic zone size becomes equal to the prior austenitic grain size.  相似文献   

10.
In an attempt to analyze the behavior of physically “short” cracks, a study has been made of the development, location, and effect of crack closure on the behavior of fatigue cracks arrested at the “long” crack threshold stress intensity range, ΔK TH , in underaged, peak aged, and overaged microstructures in a 7150 aluminum alloy. By monitoring the change in closure stress intensity,K cl, during thein situ removal of material left in the wake of arrested threshold cracks, approximately 50 pct of the closure was found to be confined to a region within ∼500 μm of the crack tip. Following wake removal, previously arrested threshold cracks recommenced to propagate at low load ratios even though nominal stress intensity ranges didnot exceed ΔK TH , representing the behavior of physically short cracks emanating from notches. No such crack extension at ΔK TH was seen at high load ratios. With subsequent crack extension, crack closure was observed to redevelop leading to a deceleration in growth rates. The development of such closure was found to occur over crack extensions comparable with microstructural dimensions, rather than those associated with local crack tip plasticity. Such results provide further confirmation that the existence of a fatigue threshold and the growth of physically short cracks are controlled primarily by crack closure, and the data are discussed in terms of the micro-mechanisms of closure in precipitation hardened alloy systems. Formerly Graduate Student with the Department of Mechanical Engineering, University of California, Berkeley  相似文献   

11.
The fatigue propagation rates and fatigue threshold ( ΔK th) values were studied (R = 0.1 and frequency = 20 Hz) on copper and 70-30 α-brass of two different grain sizes in laboratory air and dry argon. With decreasing grain size, the threshold increased in copper, while it decreased in α-brass. These results suggest that in copper, crack tip plasticity considerations were more important in determining the threshold values than crack closure effects. Dry argon increased ΔK th slightly in copper and more significantly in α-brass. A transition from completely transgranular to partially intergranular and back to completely transgranular cracking was observed with decreasing crack growth rates in both materials and environments. The growth rates for which intergranular cracking was obtained were found to be consistent with a hydrogen embrittlement mechanism, associated with adsorption of water molecules and dislocation transport of hydrogen.  相似文献   

12.
The fatigue crack growth behavior of MAR-M200 single crystals was examined at 982 °C. Using tubular specimens, fatigue crack growth rates were determined as functions of crystallographic orientation and the stress state by varying the applied shear stress range-to-normal stress range ratio. Neither crystallographic orientation nor stress state was found to have a significant effect on crack growth rate when correlated with an effective ΔK which accounted for mixed-mode loading and elastic anisotropy. For both uniaxial and multiaxial fatigue, crack growth generally occurred normal to the principal stress direction and in a direction along which ΔK II vanished. Consequently, the effective ΔK was reduced to ΔKI and the rate of propagation was controlled by ΔK I only. The through-thickness fatigue cracks were generally noncrystallographic with fracture surfaces exhibiting striations in the [010], [011], and [111] crystals, but striation-covered ridges in the [211] specimen. These fracture modes are contrasted to crystallographic cracking along slip bands observed at ambient temperature. The difference in cracking behavior at 25 and 982 °C is explained on the basis of the propensity for homogeneous, multiple slip at the crack tip at 982 °C. The overall fracture mechanism is discussed in conjunction with Koss and Chan’s coplanar slip model.  相似文献   

13.
The fatigue threshold and low-rate crack propagation properties for a carbon steel, two high-strength steels, and two stainless steels were investigated in a 3 pct sodium chloride aqueous solution at frequencies between 0.03 and 30 Hz. Tests were conducted in a manner designed to avoid crack closure. Under freely corroding conditions, the effective values of the threshold stress intensity factor range, ΔKth,eff, were lower than in air for all of the steels. In particular, the ΔKth,eff values for the carbon and high-strength steels were almost equal to the theoretical ΔKth value of about 1 MPa m1/2 calculated on the basis of the dislocation emission from the crack tip. At a given ΔK level higher than the threshold, the fatigue crack propagation rates accelerated with decreasing frequency for all of the steels. Under cathodic protection, the threshold and fatigue crack propagation properties were coincident with those in air regardless of material and frequency. The observed fatigue crack propagation behavior in a 3 pct NaCl solution was closely related to the corrosion reaction of the bare surface formed at the crack tip during each loading cycle.  相似文献   

14.
A study has been made of the mechanics and mechanisms of fatigue crack propagation in a commercial plate of aluminum-lithium alloy 2090-T8E41. In Part II, the crack growth behavior of naturallyoccurring, microstructurally-small (2 to 1000μm) surface cracks is examined as a function of plate orientation, and results compared with those determined in Part I on conventional long (≳5 mm) crack samples. It is found that the near-threshold growth rates of small cracks are between 1 to 3 orders of magnitude faster than those for long cracks, subjected to the same nominal stress intensity ranges (at a load ratio of 0.1). Moreover, the small cracks show no evidence of an intrinsic threshold and propagate at ΔK levels as low as 0.7 MPa{ie563-01}, far below the long crack threshold ΔKTH. Their behavior is also relatively independent of orientation. Such accelerated small crack behavior is attributed primarily to restrictions in the development of crack tip shielding (principally from roughness-induced crack closure) with cracks of limited wake. This notion is supported by the close correspondence of small crack results with long crack growth rates plotted in terms of ΔKeff (i.e., after allowing for closure above the effective long crack threshold). Additional factors, including the different statistical sampling effect of large and small cracks with microstructural features, are briefly discussed.  相似文献   

15.
On the mechanism of fatigue crack growth in silicon nitride   总被引:2,自引:0,他引:2  
The mechanism of fatigue crack growth in silicon nitride under the experimental conditions utilized is found to be of a cyclic nature, as contrasted to a form of static fatigue observed in some other ceramic systems. Conventional methods of analysis of the rate of fatigue crack growth in terms of ΔKeff are not applicable, because the results of the experimental portion of this investigation show that ΔKeff can decrease as the rate of fatigue crack growth increases. A mechanism which involves the formation of microcracks caused by a wedge effect which develops during the unloading portion of a cycle is discussed and evaluated. The wedge effect results from crack closure, which arises due to the roughness of the intergranular fracture surface as well as to debris trapped between the opposing fracture surfaces. In the proposed mechanism, the extent of crack advance per cycle is limited because of the decrease in stress intensity factor with crack advance in a given cycle associated with the wedge effect. The quantitative results of a semiempirical analysis of tests carried out in either air or vacuum are in agreement with some unusual experimental trends.  相似文献   

16.
Microscopic fatigue crack propagation (FCP) paths in peak-aged unrecrystallized alloy 2090 are identified as functions of intrinsicda/dN- ΔK kinetics and environment. The FCP rates in longitudinal-transverse (LT)-oriented 2090 are accelerated by hydrogen-producing environments (pure water vapor, moist air, and aqueous NaCl), as defined in Part I. Subgrain boundary cracking (SGC) dominates for ΔK values where the cyclic plastic zone is sufficient to envelop subgrains. At low ΔK, when this crack tip process zone is smaller than the subgrain size, environmental FCP progresses on or near (100) or (110) planes, based on etch-pit shape. For inert environments (vacuum and He) and pure O2 with crack surface oxidation, FCP produces large facets along 111 oriented slip bands. This mode does not change with ΔK, andT 1 decorated subgrain boundaries do not affect an expectedda/dN- ΔK transition for the inert environments. Rather, the complex dependence ofda/dN on ΔK is controlled by the environmental contribution to process zone microstructure-plastic strain interactions. A hydrogen embrittlement mechanism for FCP in 2090 is supported by similar brittle crack paths for low pressure water vapor and the electrolyte, the SGC and 100/110 crystallographic cracking modes, the influence of cyclic plastic zone volume ( ΔK), and the benignancy of O2. The SGC may be due to hydrogen production and trapping atT 1 bearing sub-boundaries after process zone dislocation transport, while crystallographic cracking may be due to lattice decohesion or hydride cracking. Robert S. Piascik, formerly Graduate Student, Department of Materials Science, University of Virginia.  相似文献   

17.
The fatigue crack propagation properties of a rapidly solidified aluminum alloy are compared with those of a metal matrix composite (MMC) made of the same base alloy with the addition of 11.5 vol pct SiC particulate. The high-temperature base material, alloy 8009 produced by Allied-Signal, Inc. (Morristown, NJ), is solidified and processed using powder metallurgy techniques; these techniques yield a fine-grained, nonequilibrium microstructure. A direct comparison between the fatigue crack propagation properties of the reinforced and unreinforced materials is possible, because alloy 8009 requires no postprocessing heat treatment. As a consequence, this comparison reflects the influence of the SiC particulate and not differences in microstructure that could arise during processing and aging. The experimental data demonstrate that the SiC-reinforced material exhibits modestly superior fatigue crack propagation properties: slower crack growth rates for a given ΔK, at near-threshold crack growth rates. Even when the data are corrected for crack closure using an effective stress intensity factor, ΔKeff, the composite exhibits lower crack propagation rates than the unreinforced matrix alloy. Microscopic evidence shows a rougher fracture surface and a more tortuous crack path in the composite than in the base alloy. It is argued that the lower crack growth rates and higher intrinsic threshold stress intensity factor observed in the composite are associated with crack deflection around SiC particles. Formerly Graduate Research Assistant, University of California-Davis  相似文献   

18.
The effects of changes in R ratio on the fatigue crack growth behavior of a Nb-10 at. pct Si composite as well as bulk Nb-1.24 at. pct Si were determined. Fatigue crack growth experiments were performed over a range of ΔK levels at R ratios of 0.1 and 0.4. Qualitative and quantitative scanning electron microscopy studies were performed to characterize the fatigue fracture features of the composites and alloys, in order to determine the factors controlling these fracture features. The results of this work indicate that increases in R ratio reduce the observed threshold stress intensities in both materials. Somewhat higher fatigue thresholds were observed in the Nb-Si (ss) compared to pure Nb in the literature. In contrast to the bulk Nb-Si (ss) alloy, which exhibited no evidence of cleavage fracture in fatigue at any R ratio or ΔK level, the Nb-Si (ss) constituent in the Nb-10 at. pct Si composite exhibited a distinct fracture mode transition from ductile tearing near threshold and low ΔK to cleavage fracture with an increase in ΔK and K max. Possible reasons for such observations are provided. This article is based on a presentation made in the symposium “Fatigue and Creep of Composite Materials” presented at the TMS Fall Meeting in Indianapolis, Indiana, September 14–18, 1997, under the auspices of the TMS/ASM Composite Materials Committee.  相似文献   

19.
An attempt has been made to systematically investigate the effects of microstructural parameters, such as the prior austenite grain size (PAGS), in influencing the resistance to fatigue crack growth (FCG) in the near-threshold region under three different temper levels in a quenched and tempered high-strength steel. By austenitizing at various temperatures, the PAGS was varied from about 0.7 to 96 μm. The microstructures with these grain sizes were tempered at 200 °C, 400 °C, and 530 °C and tested for fatigue thresholds and crack closure. It has been found that, in general, three different trends in the dependence of both the total threshold stress intensity range, ΔK th , and the intrinsic threshold stress intensity range, ΔK eff, th , on the PAGS are observable. By considering in detail the factors such as cyclic stress-strain behavior, environmental effects on FCG, and embrittlement during tempering, the present observations could be rationalized. The strong dependence of ΔK th and ΔK eff, th on PAGS in microstructures tempered at 530 °C has been primarily attributed to cyclic softening and thereby the strong interaction of the crack tip deformation field with the grain boundary. On the other hand, a less strong dependence of ΔK th and ΔK eff, th on PAGS is suggested to be caused by the cyclic hardening behavior of lightly tempered microstructures occurring in 200 °C temper. In both microstructures, crack closure influenced near-threshold FCG (NTFCG) to a significant extent, and its magnitude was large at large grain sizes. Microstructures tempered at the intermediate temperatures failed to show a systematic variation of ΔKth and ΔKeff, th with PAGS. The mechanisms of intergranular fracture vary between grain sizes in this temper. A transition from “microstructure-sensitive” to “microstructure-insensitive” crack growth has been found to occur when the zone of cyclic deformation at the crack tip becomes more or less equal to PAGS. Detailed observations on fracture morphology and crack paths corroborate the grain size effects on fatigue thresholds and crack closure. K.S. RAVICHANDRAN, formerly Research Scholar, Department of Metallurgy, Indian Institute of Science  相似文献   

20.
The role of microstructure and environment in influencing ultra-low fatigue crack propagation rates has been investigated in 7075 aluminum alloy heat-treated to underaged, peak-aged, and overaged conditions and tested over a range of load ratios. Threshold stress intensity range, ΔK0, values were found to decrease monotonically with increasing load ratio for all three heat treatments fatigue tested in 95 pct relative humidity air, with ΔK 0 decreasing at all load ratios with increased extent of aging. Comparison of the near-threshold fatigue behavior obtained in humid air with the data forvacuo, however, showed that the presence of moisture leads to a larger reduction in ΔK0 for the underaged microstructure than the overaged condition, at all load ratios. An examination of the nature of crack morphology and scanning Auger/SIMS analyses of near-threshold fracture surfaces revealed that although the crack path in the underaged structure was highly serrated and nonlinear, crack face oxidation products were much thicker in the overaged condition. The apparent differences in slow fatigue crack growth resistance of the three aging conditions are ascribed to a complex interaction among three mechanisms: the embrittling effect of moisture resulting in conventional corrosion fatigue processes, the role of microstructure and slip mode in inducing crack deflection, and crack closure arising from a combination of environmental and microstructural contributions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号