共查询到20条相似文献,搜索用时 15 毫秒
1.
New experimental data are reported to demonstrate that high purity H2 can be directly produced by sorption-enhanced water gas shift (WGS) reaction using synthesis gas (CO + H2O) as sorber-reactor feed gas. An admixture of a commercial WGS catalyst and a proprietary CO2 chemisorbent (K2CO3 promoted hydrotalcite or Na2O promoted alumina) was used in the sorber-reactor for removal of CO2, the WGS reaction by-product, from the reaction zone. The promoted alumina was found to be a superior CO2 chemisorbent for this application because (a) it could directly produce a fuel-cell grade H2 product (<10–20 ppm CO) at reaction temperatures of 200 and 400 °C, and (b) it produced ∼45.6% more high purity H2 product per unit amount of sorbent than the promoted hydrotalcite at 400 °C. Furthermore, the specific fuel-cell grade H2 productivity by the promoted alumina at a reaction temperature of 200 °C was ∼3.6 times larger than that at 400 °C. These striking differences in the performance of the two CO2 chemisorbents were caused by the differences in their CO2 sorption equilibria and kinetics. 相似文献
2.
Liuye Mo Eng-Toon Saw Yasotha Kathiraser Ming Li Ang Sibudjing Kawi 《International Journal of Hydrogen Energy》2018,43(33):15891-15897
Highly dispersed Cu/SiO2 catalysts doped with CeO2 have been successfully prepared via in-situ self-assembled core-shell precursor route. The prepared catalysts were characterized by XRD, SEM, TPR, chemisorption and XPS techniques. The results showed that our newly developed method could not only prepare highly dispersed supported metal catalysts but also highly dispersed supported CeO2 on silica. The highly dispersed CeO2 showed strong interaction with highly dispersed Cu. The synergy between the highly dispersed CeO2 and the highly dispersed Cu exhibited high catalytic activity for high temperature water gas shift reaction compared to the catalysts prepared with the routine method of incipient impregnation. 相似文献
3.
Raúl Sanz José Antonio CallesDavid Alique Laura Furones 《International Journal of Hydrogen Energy》2014
In this work, H2 production via catalytic water gas shift reaction in a composite Pd membrane reactor prepared by the ELP “pore-plating” method has been carried out. A completely dense membrane with a Pd thickness of about 10.2 μm over oxidized porous stainless steel support has been prepared. Firstly, permeation measurements with pure gases (H2 and N2) and mixtures (H2 with N2, CO or CO2) at four different temperatures (ranging from 350 to 450 °C) and trans-membrane pressure differences up to 2.5 bar have been carried out. The hydrogen permeance when feeding pure hydrogen is within the range 2.68–3.96·10−4 mol m−2 s−1 Pa−0.5, while it decreases until 0.66–1.35·10−4 mol m−2 s−1 Pa−0.5 for gas mixtures. Furthermore, the membrane has been also tested in a WGS membrane reactor packed with a commercial oxide Fe–Cr catalyst by using a typical methane reformer outlet (dry basis: 70%H2–18%CO–12%CO2) and a stoichiometric H2O/CO ratio. The performance of the reactor was evaluated in terms of CO conversion at different temperatures (ranging from 350 °C to 400 °C) and trans-membrane pressures (from 2.0 to 3.0 bar), at fixed gas hourly space velocity (GHSV) of 5000 h−1. At these conditions, the membrane maintained its integrity and the membrane reactor was able to achieve up to the 59% of CO conversion as compared with 32% of CO conversion reached with conventional packed-bed reactor at the same operating conditions. 相似文献
4.
In this work the effects of different promoters (Cr, Al, Mn, Ce, Ni, Co and Cu) on the structural and catalytic properties of Nanocrystalline iron based catalysts for high temperature water gas shift reaction were investigated. The catalysts were prepared in active phase (Fe3O4) via a facile direct synthesis routs without any additive and characterized using X-ray diffraction (XRD), N2 adsorption (BET), temperature-programmed reduction (TPR), transmission and scanning electron microscopies (TEM,SEM) techniques. The obtained results indicated that synergic effect of Mn and Ni promoters can lead to obtain a Cr-free catalyst with high activity. In addition, the effect of Ni content on the structural and catalytic properties of the Fe–Mn–Ni catalysts was investigated. It was found that Fe–Mn–Ni catalyst with Fe/Mn = 10 and Fe/Ni = 5 weight ratios showed the highest catalytic activity among the prepared catalysts and possessed a stable catalytic performance without any decrease during 10 h time on stream. Moreover, the effect of GHSV and steam/gas ratio on the catalytic performance of this catalyst was investigated. 相似文献
5.
The effect of increasing the reaction temperature to 300 °C on the activity, stability and deactivation behavior of a 4.5 wt.% Au/CeO2 catalyst in the water gas shift (WGS) reaction in idealized reformate was studied by kinetic and spectroscopic measurements at 300 °C and comparison with previously reported data for reaction at 180 °C under similar reaction conditions [A. Karpenko, Y. Denkwitz, V. Plzak, J. Cai, R. Leppelt, B. Schumacher, R.J. Behm, Catal. Lett. 116 (2007) 105]. Different procedures for catalyst pretreatment were used, including annealing at 400 °C in oxidative, reductive or inert atmospheres as well as redox processing. The formation/removal of stable adsorbed reaction intermediates and side products (surface carbonates, formates, OHad, COad) was followed by in situ IR spectroscopy (DRIFTS), the presence of differently oxidized surface species (Au0, Au0′, Au3+, Ce3+) was evaluated by XPS. The reaction characteristics at 300 °C generally resemble those at 180 °C, including (i) significantly higher reaction rates, (ii) comparable apparent activation energies (44 ± 1/50 ± 1 kJ mol−1 vs. 40 ± 1 kJ mol−1 at 180 °C), (iii) a correlation between deactivation of the catalyst and the build-up of stable surface carbonates, and (iv) a decrease of the initially significant differences in activity after different pretreatment procedures with reaction time. Different than expected, the tendency for deactivation did not decrease with higher temperature, due to enhanced carbonate decomposition, but increases. 相似文献
6.
Lei Li Li SongHaidong Wang Chongqi ChenYusheng She Yingying ZhanXingyi Lin Qi Zheng 《International Journal of Hydrogen Energy》2011,36(15):8839-8849
A series of CeO2 supports were firstly prepared by precipitation method with NH3⋅H2O (NH), (NH4)2CO3 (NC) and K2CO3 (KC) as precipitant, respectively, and then CuO/CeO2 catalysts were fabricated by depositing CuO on the as-obtained CeO2 supports by deposition-precipitation method. The effect of CeO2 supports prepared from different precipitants on the catalytic performance, physical and chemical properties of CuO/CeO2 catalysts was investigated with the aid of XRD, N2-physisorption, N2O chemisorption, FT-IR, TG, H2-TPR, CO2-TPD and cyclic voltammetry (CV) characterizations. The CuO/CeO2 catalysts were examined with respect to their catalytic performance for the water-gas shift reaction, and their catalytic activities and stabilities are ranked as: CuO/CeO2-NH > CuO/CeO2-NC > CuO/CeO2-KC. Correlating to the characteristic results, it is found that the CeO2 support prepared by precipitation with NH3⋅H2O as precipitant (i.e., CeO2-NH-300) has the best thermal stability and least surface “carbonate-like” species, which make the corresponding CuO/CeO2-NH catalyst presents the highest Cu-dispersion, the highest microstrain (i.e., the highest surface energy) of CuO, the strongest reducibility and the weakest basicity. While, the precipitants that contain CO32- (e.g. (NH4)2CO3 and K2CO3) result in more surface “carbonate-like” species of CeO2 supports and CuO/CeO2 catalysts. As a result, CuO/CeO2-NC and CuO/CeO2-KC catalysts present poor catalytic performance. 相似文献
7.
San Shwe Hla Y. SunG.J. Duffy L.D. MorpethA. Ilyushechkin A. CousinsD.G. Roberts J.H. Edwards 《International Journal of Hydrogen Energy》2011,36(1):518-527
The kinetics of the water-gas shift (WGS) reaction over a novel La0.7Ce0.2FeO3 perovskite-like catalyst is investigated using simulated coal-derived syngas at temperatures of 550 °C and 600 °C which are higher than the maximum operating temperature limit for conventional high temperature WGS catalysts. The influences of CO, CO2, H2O and H2 concentration on WGS reaction rate are determined using selected gas compositions that might be encountered in a coal-based gasification system. An empirical power-law rate model used in this study is found to correlate well with experimental data with good accuracy. Kinetics parameters over La0.7Ce0.2FeO3 obtained in this study are mostly in agreement with those previously measured using Fe-Cr based commercial catalysts in a range of relatively lower temperatures (300-500 °C). 相似文献
8.
SiO2-ZrO2 supports with various zirconium contents are prepared by grafting a zirconium precursor onto the surface of commercial Carbosil silica. Ni(20 wt.%)/SiO2-ZrO2 catalysts are then prepared by an impregnation method, and are applied to hydrogen production by steam reforming of liquefied natural gas (LNG). The effect of SiO2-ZrO2 supports on the performance of the Ni(20 wt.%)/SiO2-ZrO2 catalysts is investigated. SiO2-ZrO2 prepared by a grafting method serves as an efficient support for the nickel catalyst in the steam reforming of LNG. Zirconia enhances the resistance of silica to steam significantly and increases the interaction between nickel and the support, and furthermore, prevents the growth of nickel oxide species during the calcination process through the formation of a ZrO2-SiO2 composite structure. The crystalline structures and catalytic activities of the Ni(20 wt.%)/SiO2-ZrO2 catalysts are strongly influenced by the amount of zirconium grafted. The conversion of LNG and the yield of hydrogen show volcano-shaped curves with respect to zirconium content. Among the catalysts tested, the Ni(20 wt.%)/SiO2-ZrO2 (Zr/Si = 0.54) sample shows the best catalytic performance in terms of both LNG conversion and hydrogen yield. The well-developed and pure tetragonal phase of ZrO2-SiO2 (Zr/Si = 0.54) appears to play an important role in the adsorption of steam and subsequent spillover of steam from the support to the active nickel. The small particle size of the metallic nickel in the Ni(20 wt.%)/SiO2-ZrO2 (Zr/Si = 0.54) catalyst is also responsible for its high performance. 相似文献
9.
Xian-Jun Zheng Yong-Jie Wei Li-Fang Wei Bing Xie Ming-Bao Wei 《International Journal of Hydrogen Energy》2010
The CuO/SnO2 composites have been prepared by the simple co-precipitation method and further characterized by the XRD, FESEM and Raman spectroscopy. The photocatalytic H2 production from acetic acid (HAc) solution over CuO/SnO2 photocatalyst has been investigated at room temperature under UV irradiation. Effects of CuO loading, photocatalyst concentration, acetic acid concentration and pH on H2 production have been systematically studied. Compared with pure SnO2, the 33.3 mol%CuO/SnO2 composite exhibited approximately twentyfold enhancement of H2 production. The H2 yield is about 0.66 mol-H2/mol-HAc obtained under irradiation for prolonged time. The Langmuir-type model is applied to study the dependence of hydrogen production rate on HAc concentration. A possible mechanism for photocatalytic degradation of acetic acid over CuO/SnO2 photocatalyst is proposed as well. Our results provide a method for pollutants removal with simultaneous hydrogen generation. Due to simple preparation, high H2 production activity and low cost, the CuO/SnO2 photocatalyst will find wide application in the coming future of hydrogen economy. 相似文献
10.
In this work mesoporous nanocrystalline chromium free Fe–Al–Ni catalysts with various Fe/Al and Fe/Ni ratios were prepared by coprecipitation method for high temperature water gas shift reaction. The prepared catalysts were characterized using X-ray diffraction (XRD), N2 adsorption (BET), temperature-programmed reduction (TPR) and transmission electron microscopy (TEM) techniques. The catalytic results revealed that the catalyst with Fe/Al = 10 and Fe/Ni = 5 weight ratios exhibited the highest catalytic activity among the prepared catalysts and the commercial chromium containing one. This catalyst possessed a high surface area of 177.4 m2 g−1 with an average pore size of 4.3 nm with a high stability during 20 h time on stream. Furthermore, the effect of calcination temperature, GHSV and steam/gas ratio on the structural properties and catalytic performance of the catalyst with the highest activity was investigated. 相似文献
11.
We demonstrate the activity of Ti0.84Pt0.01Fe0.15O2−δ and Ti0.73Pd0.02Fe0.25O2−δ catalysts towards the CO oxidation and water gas shift (WGS) reaction. Both the catalysts were synthesized in the nano crystalline form by a low temperature sonochemical method and characterized by different techniques such as XRD, FT-Raman, TEM, FT-IR, XPS and BET surface analyzer. H2-TPR results corroborate the intimate contact between noble metal and Fe ions in the both catalysts that facilitates the reducibility of the support. In the absence of feed CO2 and H2, nearly 100% conversion of CO to CO2 with 100% H2 selectivity was observed at 300 °C and 260 °C respectively, for Ti0.84Pt0.01Fe0.15O2−δ and Ti0.73Pd0.02Fe0.25O2−δ catalyst. However, the catalytic performance of Ti0.73Pd0.02Fe0.25O2−δ deteriorates in the presence of feed CO2 and H2. The change in the support reducibility is the primary reason for the significant increase in the activity for CO oxidation and WGS reaction. The effect of Fe addition was more significant in Ti0.73Pd0.02Fe0.25O2−δ than Ti0.84Pt0.01Fe0.15O2−δ. Based on the spectroscopic evidences and surface phenomena, a hybrid reaction scheme utilizing both surface hydroxyl groups and the lattice oxygen was hypothesized over these catalysts for WGS reaction. The mechanisms based on the formate and redox pathway were used to fit the kinetic data. The analysis of experimental data shows the redox mechanism is the dominant pathway over these catalysts. 相似文献
12.
Xiaru Du Diannan Gao Zhongshan Yuan Na Liu Chunxi Zhang Shudong Wang 《International Journal of Hydrogen Energy》2008
Monolithic catalysts were prepared by washcoating Ce0.8Zr0.2O2 slurries and then impregnating platinum or rhenium onto cordierite substrates, and characterized by Brunauer–Emmett–Teller (BET), X-ray diffraction (XRD), inductively coupled plasma (ICP), temperature-programmed-reduction (TPR) and temperature-programmed deposition of CO (CO-TPD) techniques. The effects of preparation parameters on the catalytic performance for water gas shift (WGS) reaction were investigated in details, including different Ce0.8Zr0.2O2 powder as washcoat, coat loadings, metal loadings, Pt/Re weight ratio and impregnation sequences. In addition, pyrophoricity (exposure to oxygen stream) and long-term stability were carried out over monolithic catalysts with the optimized composition. The results showed that Ce0.8Zr0.2O2 prepared by microemulsion methods was the preferred washcoat, and that 50 wt% Ce0.8Zr0.2O2 coat loading and 0.68 wt% Pt loading were required to reduce CO content to ca. 1%. The optimal catalytic performance was achieved over 0.11 wt% Re/0.34 wt% Pt/50 wt% Ce0.8Zr0.2O2–M/cordierite catalyst. Pyrophoricity tests indicated that no obvious activity loss was observed over 0.11 wt% Re/0.34 wt% Pt/50 wt% Ce0.8Zr0.2O2–M/cordierite catalyst after three exposures to oxygen; while 17% of the initial activity was lost over industrial B206 after one exposure. Monolithic 0.11 wt% Re/0.34 wt% Pt/50 wt% Ce0.8Zr0.2O2–M/cordierite catalyst exhibited good stability during 80 h on-stream test. 相似文献
13.
Seetharamulu Podila Sharif F. Zaman Hafedh Driss Abdulrahim A. Al-Zahrani Muhammad A. Daous Lachezar A. Petrov 《International Journal of Hydrogen Energy》2017,42(12):8006-8020
Hydrogen production from ammonia decomposition was studied using a series of unsupported high surface area molybdenum nitride (Mo2N) and cobalt promoted molybdenum nitride (3%Co-Mo2N) catalysts prepared with citric acid (CA) as a chelating agent. To elucidate the influence of citric acid amount in preparation conditions on the structure and catalytic activity, we prepared catalysts with different citric acid to Mo molar ratios i.e. CA/Mo = 1, 2, 3 and 4. The catalytic activity was evaluated in the temperature range of 300–600 °C at atmospheric pressure. The catalytic activity of the tested samples has changed in the following order of CA/Mo atomic ratio of 1 < 2 < 3 > 4. Therefore, the catalyst prepared by using CA/Mo ratio = 3 showed the highest catalytic activity. BET, XRD, XPS, SEM and TEM-EDS techniques were been used to characterize the catalysts. The increased activity of Mo2N-3:1 and 3%Co-Mo2N-3:1 catalysts was due to increased surface area, decreased particle size and increased relative proportions of Mo2N and Co3Mo3N phases. The ammonia conversion for 3%Co-Mo2N catalyst was increased from 75 to 97% at 550 °C with the increase of CA/Mo ratio from 1 to 3. This enrichment of activity in 3%Co-Mo2N-3:1 catalyst is due to increased dispersion of Co3Mo3N microstructure on γ-Mo2N platelets confirmed by SEM and TEM results. No deactivation was observed for any catalysts investigated in this study for ammonia decomposition. 相似文献
14.
Lu Zhang Menglan Xiao Zhiming Gao Hongwei Ma Lixia Bao Zhanping Li 《International Journal of Hydrogen Energy》2018,43(33):15985-15994
The wet H2-rich gas was used as reducing gas instead of the H2/N2 gas in the reduction step of the catalyst preparation. It is found that the selectivity for CO methanation over the catalysts 0.4Ni/ZrO2 so-obtained was decreased in comparison to the case of the H2/N2 gas used as reducing gas. Even though, the samples with the different feed atomic ratios of Ni/Zr prepared by the impregnation method and the co-precipitation method, respectively, were evaluated with the wet H2-rich gas both as reducing gas and as reactant gas. The catalysts Ni/ZrO2-CP prepared by the co-precipitation method exhibited a high catalytic activity for CO removal at a lowered reaction temperature with increasing the Ni loading. Over the catalyst 3.0Ni/ZrO2-CP, CO in the reactant gas could be removed to below 10 ppm at reaction temperatures of 220–260 °C with the selectivity higher than 50%. And the selectivity was kept at 100% during the 100 h test at 220 °C. The catalysts were characterized by XRD, XPS, XRF and the adsorption isotherm measurement. In addition, effect of water vapor in reactant gas was studied over the catalysts 0.4Ni/ZrO2 with the wet H2-rich gas and the dry H2-rich gas as reactant gas, respectively, in the case of the H2/N2 gas fixed as reducing gas. It is seen that presence of water vapor in the reactant gas retarded methanation reactions of CO and CO2 on the catalysts. 相似文献
15.
Blending H2 with natural gas in spark ignition engines can increase for electric efficiency. In-situ H2 production for spark ignition engines fuelled by natural gas has therefore been investigated recently, and reformed exhaust gas recirculation (RGR) has been identified a potentially advantageous approach: RGR uses the steam and O2 contained in exhaust gases under lean combustion, for reforming natural gas and producing H2, CO, and CO2. In this paper, an alternative approach is introduced: air gas reforming circulation (AGRC). AGRC uses directly the O2 contained in air, rendering the chemical pathway comparable to partial oxidation. Formulations based on palladium and platinum have been selected as potential catalysts. With AGRC, the concentrations of the constituents of the reformed gas are approximately 25% hydrogen, 10% carbon monoxide, 8% unconverted hydrocarbons and 55% nitrogen. Experimental results are presented for the electric efficiency and exhaust gas (CO and HC) composition of the overall system (SI engine equipped with AGRC). It is demonstrated that the electric efficiency can increase for specific ratios of air to natural gas over the catalyst. Although the electric efficiency gain with AGRC is modest at around 0.2%, AGRC can be cost effective because of its straightforward and inexpensive implementation. Misfiring and knock were both not observed in the tests reported here. Nevertheless, technical means of avoiding knock are described by adjusting the main flow of natural gas and the additional flow of AGRC. 相似文献
16.
A series of ZnO/ZnS core/shell nanorods with different ZnS/ZnO molar ratios was synthesized via a new water bath route. The nanorods have a diameter of about 100 nm and a length ranging from a few hundred nanometers to several micrometers. They are formed by coating ZnO nanorod with a layer of porous ZnS shell mainly consisting of crystals which are about 12 nm in diameter. The results showed that the deposition thickness of the ZnS shell layer strongly affected the morphologies, surface area, structure, photo absorption and photocatalytic performance of the ZnO/ZnS core/shell nanorods. The as-prepared ZnO/ZnS core/shell nanorods exhibited a higher photocatalytic activity for H2 evolution from the glycerol/water mixtures compared with the ZnO nanorods under the same conditions. The maximum H2 production was 2608.7 and 388.4 μmol h−1 gcat−1 under UV and solar-simulated light irradiation and the corresponding quantum efficiencies were 22% and 13%, respectively. The deposition thickness of the ZnS shell and the interaction between the ZnO rod and ZnS shell and the core/shell structure with n-p heterojunction substantially influence the optical and catalytic performance of the ZnO/ZnS core/shell nanorods. 相似文献
17.
Varagunapandiyan Natarajan Suddhasatwa Basu Keith Scott 《International Journal of Hydrogen Energy》2013
Ruthenium oxide catalysts were prepared by a sol–gel technique and calcined at different temperatures e.g., 400 °C, 500 °C and 600 °C. The catalysts performance for the oxygen evolution reaction was studied using cyclic voltammetry and their performance in a high temperature proton exchange membrane water electrolyser (PEMWE) examined. Physio-chemical characterization was carried out to study the thermal stability, oxygen-metal bond formation, crystallinity phase and crystallite size, particle size and elemental analysis by TGA, FTIR, XRD, TEM and EDX respectively. The electrolyte used for electrochemical characterisation was 1.0 M H3PO4 and 0.5 M H2SO4. Additionally, the effect of calcination and electrolyte temperature on oxygen evolution reaction of RuO2 catalysts was studied and the apparent activation energy was determined using chronoamperometry. The prepared RuO2 were tested as anode catalyst in PEMWE in the temperature range of 120–150 °C using phosphoric acid doped polybenzimidazole membrane electrolyte. The physio-chemical and electrochemical characterization results indicate that RuO2 calcined at 500 °C gave the best performance with a current density of 0.875 A cm−2 at 1.8 V in a PEMWE operated at 150 °C. 相似文献
18.
The performance of a novel thermal swing sorption-enhanced reaction (TSSER) concept for simultaneous production of fuel-cell grade hydrogen and compressed carbon dioxide as a by-product from a synthesis gas feed is simulated using Na2O promoted alumina as a CO2 chemisorbent in the process. The process simultaneously carries out the water gas shift (WGS) reaction and removal of CO2 from the reaction zone by chemisorption in a single unit. Periodic regeneration of the chemisorbent is achieved by using the principles of thermal swing adsorption employing super-heated steam purge. 相似文献
19.
Sreenivasan Koliyat Parayil Rhett J. PsotaRanjit T. Koodali 《International Journal of Hydrogen Energy》2013
We report a facile method for the synthesis of TiO2 aerogels by a single step high temperature supercritical drying (HTSCD) of sol–gel derived TiO2. The morphological and structural features of the resultant materials were determined by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, Diffuse Reflectance (DR) spectra, and Fourier Transform infra-Red spectroscopy (FT-IR) measurements. The materials exhibited enhanced solar hydrogen production from water using methanol as sacrificial reagent under Ultra-Violet (UV) light in the absence of Pt as a co-catalyst. Among the TiO2 aerogel samples synthesized, TiO2-M-6h evolved 390 μmol g−1 of H2 after 4 h of irradiation, whereas TiO2-M-2h produced 217 μmol g−1 of H2 after 4 h of irradiation under identical conditions, indicating the importance of aging the gels prior to HTSCD step. The enhancement was credited to increase in surface area, and decrease in particle size in TiO2-M-6h as evidenced from N2-sorption and DRS studies respectively. Upon comparison with a room temperature synthesized TiO2-xerogel, the aerogel materials exhibited enhanced hydrogen production. The results validate the superior performance of TiO2 aerogel materials over TiO2 xerogels and indicate the potential of HTSCD method for the preparation of titania aerogels for solar energy applications. 相似文献
20.
V. Skoulou E. Kantarelis S. Arvelakis W. Yang A. Zabaniotou 《International Journal of Hydrogen Energy》2009
The effect of biomass water leaching on H2 production, as well as, prediction of ash thermal behavior and formation of biomass tar during high temperature steam gasification (HTSG) of olive kernel is the main aim of the present work. Within this study raw olive kernel samples (OK1, OK2) and a pre-treated one by water leaching (LOK2) were examined with regard to their ash fouling propensity and tar concentration in the gaseous phase. Two temperatures (T = 850 and 950 °C) and a constant steam to biomass ratio (S/B = 1.28) were chosen in order to perform the steam gasification experiments. Results indicated that considering the samples' ash thermal behavior, it seemed that water leaching improved the fusibility behavior of olive kernel; however, it proved that water leaching does not favour tar steam reforming, while at the same time decreases the H2 yield in gas product under air gasification conditions, due to possible loss of the catalytic effect of ash with water leaching. 相似文献