首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For reinforced concrete beams with the same shear and flexural reinforcements, shear failure is most likely to occur in deep beams rather than in regular beams. Thus, retrofitting of deep beams with shear deficiencies is of great importance. Externally bonded reinforcement such as carbon fiber reinforced polymer (CFRP) provides an excellent solution in these situations. In order to investigate the shear behavior of deep beams with externally bonded CFRP shear reinforcement, 16 deep beams without steel shear reinforcement were cast at the concrete laboratory of New Jersey Institute of Technology. After the beams were kept in the curing room for 28 days, carbon fiber strips and fabrics were applied outside of the beams at various orientations with respect to the axis of the beam. All beams were tested on a 979?kN (220?kip) MTS testing machine. Results of test demonstrate the feasibility of using externally applied, epoxy-bonded CFRP system to restore or increase the shear capacity of deep beams. The CFRP system can significantly increase the serviceability, ductility, and ultimate shear strength of a concrete beam, thus restoring deep beam shear strength using CFRP is a highly effective technique. An analysis and design method for shear strengthening of deep beams using externally bonded CFRP has also been proposed as well.  相似文献   

2.
3.
This paper describes an experimental program conducted to develop new carbon fiber reinforced polymer (CFRP) stirrups as shear reinforcement for concrete members. The structural behavior of the CFRP stirrups was examined. To simulate the performance mechanism of stirrups in concrete beams, the CFRP stirrup was embedded in two concrete blocks and tested in tension by pushing the concrete blocks away from each other. A total of 12 specimens were constructed and tested to failure. The test variables were the tail length of the stirrup beyond the bent portion, the stirrup anchorage, the bar diameter, and the embedment length. In addition, two full-scale concrete beams reinforced with CFRP stirrups as shear reinforcement were constructed and tested to failure. Test results of the concrete blocks indicated that the strength capacity at the bend of the newly developed CFRP stirrups was adequate and fulfilled the design requirements of different codes and design guides. Further, the tail length was found to be not less than six times the bar diameter to develop the stirrup capacity. The performance of the stirrups in the beam tests was appropriate until reaching the failure of the beams in flexure.  相似文献   

4.
Repair, strengthening, and retrofit of reinforced and prestressed concrete members have become increasingly important issues as the World’s infrastructure deteriorates with time. Buildings and bridges are often in need of repair or strengthening to accommodate larger live loads as traffic and building occupancies change. In addition, inadequate design and detailing for seismic and other severe natural events has resulted in considerable structural damage and loss of life, particularly in reinforced concrete buildings. Numerous buildings and bridges suffer damage during such events and need to be repaired. The use of carbon fiber reinforced polymer (CFRP) composite fabric bonded to the surface of concrete members is comparatively simple, quick and virtually unnoticeable after installation. The use of composites has become routine for increasing both the flexural and shear capacities of reinforced and prestressed concrete beams. Earthquake retrofit of bridge and building structures has relied increasingly on composite wrapping of columns, beams and joints to provide confinement and increase ductility. This paper presents the results of cyclic testing of three large-scale reinforced concrete slab–column connections. Each of the specimens was a half-scale model of an interior slab–column connection common to flat-slab buildings. The specimens were reinforced according to ACI-318 code requirements and included slab shear reinforcement. While supporting a slab gravity load equivalent to dead load plus 30% of the live load, the specimens were subjected to an increasing cyclic lateral loading protocol up to 5% lateral drift. The specimens were subjected to the same loading protocol after they were repaired with epoxy crack sealers and CFRP sheet on the surfaces of the slab. Repair with epoxy and CFRP on the top surface of the slab was able to restore both initial stiffness and ultimate strength of the original specimen.  相似文献   

5.
The need for structural rehabilitation of concrete structures all over the world is well known, and a great amount of research is going on in this field. The use of carbon fiber-reinforced polymer (CFRP) plate bonding has been shown to be a competitive method with regard to both structural performance and economic factors. This method consists of bonding a thin carbon-fiber laminate or sheet to the surface of the structure to act as an outer reinforcement layer. However, most research in this area has been undertaken to study flexural behavior. This paper deals with shear strengthening of reinforced concrete members by use of CFRP. Tests on rectangular beams 3.5 to 4.5 m long have been undertaken to study different parameters, such as fatigue, anchorage, and others. The strain field in shear spans of beams simultaneously subjected to shear and bending is also studied. The tests presented also contribute to the existing literature on tests of concrete members strengthened for increased shear capacity.  相似文献   

6.
This study investigated the flexural behavior of corroded steel reinforced concrete beams repaired with carbon-fiber-reinforced polymer (CFRP) sheets under repeated loading. Thirty beams (152×254×2,000?mm) were constructed and tested. Fatigue flexural failure occurred in 29 of these beams. The study showed that pitting of the steel reinforcement due to corrosion occurred only after about a 7% actual mass loss which coincided with a decrease in the fatigue performance of the beam. The controlling factor for the fatigue strength of the beams is the fatigue strength of the steel bars. Repairing with CFRP sheets increased the fatigue capacity of the beams with corroded steel reinforcement beyond that of the control unrepaired beams with uncorroded steel reinforcement. Beams repaired with CFRP at a medium corrosion level and then further corroded to a high corrosion level before testing had a comparable fatigue performance to those that were repaired and tested after corroding directly to a high corrosion level.  相似文献   

7.
A commonly observed failure mode in laboratory tests involving surface bonded fiber-reinforced polymer (FRP) laminates or near-surface-mounted (NSM) bars is premature delamination, that is, the separation of the FRP from the substrate well before the FRP reaches its ultimate strain capacity. To delay the onset of delamination and to ensure that the NSM FRP reinforcement continues to contribute to member strength after partial delamination, a new self-anchored carbon fiber-reinforced polymer (CFRP) bar was developed and tested for this investigation. This bar is made with a series of monolithic spikes that can be anchored deep inside the concrete. In addition to cutting grooves into the concrete cover for the placement of the primary reinforcing bar, holes are drilled deep into the concrete to insert the spikes. To test the performance of this bar, six large, simply supported, reinforced, concrete beams were retrofitted with NSM bars and tested in four-point bending. Two beams were strengthened with NSM bars without anchors or spikes but were otherwise similar to the self-anchored bar and served as control specimens (Series?B1). Two beams were strengthened in flexure with the new self-anchored NSM bars (Series?B2), and the remaining two beams (Series?B3) were strengthened in flexure and shear by using the self-anchored NSM bars as partial shear reinforcement. The effect of the proposed strengthening system on the beams’ strength, failure mode, deformability, and ductility are discussed on the basis of the experimental results. The anchors delayed delamination and enabled the NSM bar to experience at least a 77% higher strain at failure than the companion bar without anchors. The anchors also increased beam displacement ductility and energy ductility at a 20% strength degradation by at least 34% and 42%, respectively.  相似文献   

8.
An experimental program has been carried out to investigate the structural behavior of RC beams strengthened by carbon-fiber–reinforced polymer (CFRP) sheets and exposed to a corrosive environment. A total of eight specimens (120 × 175 × 2,000 mm) were tested. Six specimens were CFRP strengthened and corroded, one specimen was unstrengthened and corroded, and one specimen was neither strengthened nor corroded. Two different strengthening schemes were applied: (1) wrapping the specimen with CFRP sheets; and (2) both specimen wrapping and flexural strengthening. Three specimens were tested under monotonic loading and five specimens were tested in fatigue. The results showed that the use of CFRP sheets for strengthening RC beams that are experiencing steel reinforcement corrosion is an efficient technique that can maintain the structural integrity and enhance the structural behavior of such beams. The ultimate monotonic strength of the CFRP strengthened-corroded specimens increased to a level between 37 and 87% above the predicted strength of a similar unstrengthened-uncorroded (virgin) specimen. The fatigue life of the CFRP strengthened-corroded specimens was increased within a range of 2.5–6.0 times that of a similar unstrengthened-corroded specimen but was lower than that of the uncorroded (virgin) specimen.  相似文献   

9.
With the purpose of evaluating the influence of both the percentage and inclination of the carbon fiber-reinforced polymer (CFRP) laminates on the effectiveness of the near-surface mounted technique for the shear strengthening of reinforced concrete T beams, an experimental program was carried out, using three percentages of laminates and, for each one, three inclinations: 90, 60, and 45°. The CFRP-strengthened beams had a steel stirrup reinforcement ratio (ρsw) of 0.1%. The highest CFRP percentage was designed to provide a maximum load similar to the one of a reference beam reinforced with ρsw equal to 0.24%. Although these beams have had a similar maximum load, the beams with CFRP presented higher stiffness. Laminates at 60° was the most effective shear strengthening configuration, having provided a maximum increase in the load capacity of 33%. The contribution of the CFRP strengthening systems was limited by the concrete tensile strength. Below certain spacing between laminates, a group effect occurs due to the interference between consecutive concrete failure surfaces, leading to the detachment of “two lateral walls” from the underlying beam core.  相似文献   

10.
This paper presents experimental results and a numerical analysis of the reinforced concrete (RC) beams strengthened in flexure with various externally bonded carbon fiber-reinforced polymer (CFRP) configurations. The aim of the experimental work was to investigate the parameters that may delay the intermediate crack debonding of the bottom CFRP laminate, and increase the load carrying capacity and CFRP strength utilization ratio. Ten rectangular RC specimens with a clear span of 4.2?m, categorized in two series, were tested to evaluate the effect of using the additional U-shaped CFRP systems on the intermediate crack debonding of the bottom laminate. Two different configurations of the additional systems were proposed, namely, continuous U-shaped wet layup sheets and spaced side-bonded CFRP L-shaped laminates. The fiber orientation effect of the side-bonded sheets was also investigated. A numerical analysis using an incremental nonlinear displacement-controlled 3D finite-element (FE) model was developed to investigate the flexural and CFRP/concrete interfacial responses of the tested beams. The finite-element model accounts for the orthotropic behavior of the CFRP laminates. An appropriate bond-slip model was adopted to characterize the behavior of the CFRP/concrete interface. Comparisons between the FE predictions and experimental results show very good agreement in terms of the load-deflection and load-strain relationships, ultimate capacities, and failure modes of the beams.  相似文献   

11.
This paper reports the test results of 11 reinforced concrete beams strengthened with carbon fiber-reinforced polymer (CFRP) sheets and subjected to an aggressive environment. In this study, eight beams were cracked and repaired with CFRP sheets, while the remaining three beams were kept uncracked as a control. The beams were 150?mm wide by 250?mm deep by 2,400?mm long and lightly reinforced with a reinforcement ratio of 0.6%. Two types of carbon FRP products were considered: Sheets and strips. In terms of environmental exposure, three beams were kept at room temperature and eight beams were subjected up to 300 wetting and drying cycles with deicing chemicals (3% NaCl). Following the exposure, the beams were tested to failure in four-point bending. In addition, nondestructive tests were performed to determine the corrosion rate, as well as destructive tests to determine chloride diffusion and reinforcing bar mass loss. Based on the findings of the study, the long-term effectiveness of the CFRP strengthened reinforced concrete in aggressive corrosive environments was established.  相似文献   

12.
13.
Use of carbon fiber reinforced polymers (CFRP) reinforcement for prestressing concrete structures introduces a promising solution for deterioration of concrete structures due to corrosion of steel reinforcements. Due to the low elastic modulus and limited strain at failure of CFRP reinforcement, partial prestressing could be the most appropriate approach to enhance deformability and reduce the cost in comparison to fully prestressed concrete structures. For members reinforced or prestressed with fiber reinforced polymers reinforcements, serviceability requirements may be the governing criteria for the design; therefore, deflection under service loading conditions should be well defined. This paper introduces simplified methods to calculate the deflection of beams prestressed by CFRP reinforcement under short-term and repeated loading. It also examines the applicability of current approaches available to calculate the deflection. Based on an experimental program undertaken at the University of Manitoba, bond factors are introduced to account for tension stiffening of concrete beams prestressed by CFRP. A procedure to determine the location of the centroidal axis of cracked prestressed sections is also proposed. The proposed methods for deflection calculation are calibrated using the results obtained from different experimental programs. Design guidelines are proposed to predict the deflection of beams partially prestressed by CFRP reinforcement.  相似文献   

14.
Steel-reinforced polymer (SRP) composite materials are very attractive due to their low weight and high strength. The ease of installation which significantly reduces repair time and expense is another major advantage. One of the main disadvantages of SRP materials is that the matrices used for their fabrication are typically organic and thus they are susceptible to fire. In this study, a newly developed retrofit system is being used. It consists of high strength steel fibers impregnated in a fireproof inorganic matrix. The objective of this study is to examine the effects of this hybrid rehabilitation system on the fatigue performance of strengthened reinforced concrete beams. Sixteen 100?mm×150?mm×1200?mm reinforced concrete beams with enough transverse reinforcement to avoid shear failure were used in this study. Nine beams were strengthened with steel fiber sheets on their tension faces. The results from the present study indicate that the fatigue life of reinforced concrete beams, subjected to the same cycling load, can be significantly extended using externally bonded sheets. A rather important finding is that although the strengthening system increases the fatigue life of the beams, the failure mechanism remains the same in both strengthened and nonstrengthened beams. Thus, it is possible to predict the fatigue life of a cyclically loaded beam using existing fatigue models. Furthermore, no delamination failures were observed due to fatigue loading.  相似文献   

15.
A prestressed carbon fiber-reinforced polymer (CFRP) strap retrofitting system has been found to significantly enhance the shear capacity of existing reinforced concrete beams. In previous studies, the CFRP straps were supported on metal pads placed on the top and bottom of a beam necessitating top surface access. The goal of the current work was to develop a system where the straps were installed from underneath a slab without compromising the strengthening efficiency. A series of T-beam experiments was conducted where the CFRP straps were inserted through holes that were drilled from below the flange, thereby avoiding the need for access to the top surface. The depth of penetration of the CFRP straps into the compression flange, the concrete strength, the CFRP strap spacing, the presence of holes in the compression flange, and the size of the loading pads were all found to affect the shear performance. Using the most successful installation technique, the resulting CFRP strengthened beam failed at a load that was approximately 50% higher than that of an unretrofitted control beam.  相似文献   

16.
This paper presents the results of a two-phase experimental program investigating the punching shear behavior of fiber reinforced polymer reinforced concrete (FRP RC) flat slabs with and without carbon fiber reinforced polymer (CFRP) shear reinforcement. In the first phase, problems of bond slip and crack localization were identified. Decreasing the flexural bar spacing in the second phase successfully eliminated those problems and resulted in punching shear failure of the slabs. However, CFRP shear reinforcement was found to be inefficient in enhancing significantly the slab capacity due to its brittleness. A model, which accurately predicts the punching shear capacity of FRP RC slabs without shear reinforcement, is proposed and verified. For slabs with FRP shear reinforcement, it is proposed that the concrete shear resistance is reduced, but a strain limit of 0.0045 is recommended as maximum strain for the reinforcement. Comparisons of the slab capacities with ACI 318-95, ACI 440-98, and BS 8110 punching shear code equations, modified to incorporate FRP reinforcement, show either overestimated or conservative results.  相似文献   

17.
Continuous concrete beams are structural elements commonly used in structures that might be exposed to extreme weather conditions and the application of deicing salts, such as bridge overpasses and parking garages. In such structures, reinforcing continuous concrete beams with the noncorrodible fiber-reinforced polymer (FRP) bars is beneficial to avoid steel corrosion. However, the linear-elastic behavior of FRP materials makes the ability of continuous beams to redistribute loads and moments questionable. A total of seven full-scale continuous concrete beams were tested to failure. Six beams were reinforced with glass fiber-reinforced polymer (GFRP) longitudinal bars, whereas one was reinforced with steel as control. The specimens have rectangular cross section of 200×300??mm and are continuous over two spans of 2,800?mm each. Both steel and GFRP stirrups were used as transverse reinforcement. The material, spacing, and amount of transverse reinforcement were the primary investigated parameters in this study. In addition, the experimental results were compared with the code equations to calculate the ultimate capacity. The experimental results showed that moment redistribution in FRP-reinforced continuous concrete beams is possible and is improved by increasing the amount of transverse reinforcement. Also, beams reinforced with GFRP stirrups illustrated similar performance compared with their steel-reinforced counterparts.  相似文献   

18.
Although there has been growing interest and field applications of poststrengthening concrete structures using carbon fiber reinforced plastic (CFRP) laminates, very little information exists regarding the flexural fatigue behavior of reinforced concrete beams strengthened with CFRP. This paper presents the results of an investigation into the fatigue behavior of reinforced concrete beams poststrengthened with CFRP laminates. The results of twenty 3 m and six 5 m beams loaded monotonically and cyclically to failure are discussed. Comparisons are made between beams without and with CFRP strengthening. The effect on fatigue life of increasing the amount of CFRP used to strengthen the beams is also examined.  相似文献   

19.
This paper presents the results of an experimental investigation studying the effect of retrofitting interior slab–column connections against punching shear failure with externally bonded carbon fiber reinforced polymer (CFRP) strips. Six full-scale, 2000?mm-square×150-mm-thick slab specimens were constructed. The effect of varying the CFRP strengthening amount and configuration on the load-carrying capacity of the slab specimens was investigated. Specimens were supported along their edges and tested to failure. Strengthened slabs showed an increase in stiffness between 29 and 60% and in punching capacity between 6 and 16% with respect to the control unstrengthened slab. An analytical model was refined to predict the punching shear capacity of the specimens strengthened with CFRP strips. The model takes into account both the configuration and amount of CFRP strips. The proposed model shows good agreement with the experimental results.  相似文献   

20.
Shear failure is catastrophic and occurs usually without advance warning; thus it is desirable that the beam fails in flexure rather than in shear. Many existing reinforced concrete (RC) members are found to be deficient in shear strength and need to be repaired. Externally bonded reinforcement such as carbon-fiber-reinforced polymer (CFRP) provides an excellent solution in these situations. To investigate the shear behavior of RC beams with externally bonded CFRP shear reinforcement, 11 RC beams without steel shear reinforcement were cast at the concrete laboratory of the New Jersey Institute of Technology. After the beams were kept in the curing room for 28?days, carbon-fiber strips and fabrics made by Sika Corp. were applied on both sides of the beams at various orientations with respect to the axis of the beam. All beams were tested on a 979?kN (220?kips) MTS testing machine. Results of the test demonstrate the feasibility of using an externally applied, epoxy-bonded CFRP system to restore or increase the shear capacity of RC beams. The CFRP system can significantly increase the serviceability, ductility, and ultimate shear strength of a concrete beam; thus, restoring beam shear strength by using CFRP is a highly effective technique. An analysis and design method for shear strengthening of externally bonded CFRP has been proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号