首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
The heterocyclic amines, 2-amino-3-methylimidazo[4,5-f]quinoline (IQ), 2-amino-3,4-dimethylimidazo[4,5-f]quinoline (MeIQ) and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) are pyrolysis products formed when meat is cooked and are rodent mammary carcinogens. They are thought to be metabolically activated by N-hydroxylation, catalysed by cytochrome P450 (CYP), followed by O-acetylation catalysed by N-acetyltransferases. Primary cultures of human mammary epithelial cells (HMECs) prepared from up to 26 individuals for each compound, were treated with IQ, MeIQ, or PhIP (500 microM) or with N-hydroxy-2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (N-OH-PhIP) or N-hydroxy-2-amino-3-methylimidazo[4,5-f]quinoline (N-OH-IQ) (20 microM) and the levels of adduct formation in their DNA analysed by 32P-post-labelling. In order to investigate whether pharmacogenetic polymorphisms influence DNA adduct formation, the NAT2 genotype of each individual was determined by a polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method that distinguishes between the wild-type and four variant alleles. Presence of two variant alleles designates a slow NAT2 acetylator, whereas individuals with one or two wild-type alleles are designated fast NAT2 acetylators. Interindividual variations in total DNA adduct levels ranged for IQ from 0.64-63.1 DNA adducts per 10(8) nucleotides (mean 7.80), for MeIQ from 1.99-17.8 (mean 6.63), for PhIP from 0.13-4.0 (mean 0.96), for N-OH-PhIP from 6.32-497 (mean 176) and for N-OH-IQ from 0.92-30.6 (mean 9.24). The higher adduct levels observed in cells treated with the N-OH metabolites suggests that N-hydroxylation is the rate-limiting step in HMECs and this may be due to low CYP levels. In contrast, the Phase II reaction catalysed by N-acetyltransferases is probably the major step in the metabolic activation of heterocyclic amines that occurs in the breast. Higher mean levels of heterocyclic amine-DNA adduct formation were detected in the cells of NAT2 fast acetylators compared with slow acetylators, with mean adduct levels per 10(8) nucleotides following IQ treatment, of 12.74 and 3.57 respectively, following PhIP treatment, of 1.20 and 0.74, respectively, following MeIQ treatment, of 7.90 and 5.08, respectively and following N-OH-PhIP-treatment, of 243.1 and 130.0, respectively. However, due to the large variations in adduct levels, these differences in mean values were not statistically significant with the limited number of individuals studied. This appears to be the first pilot study to demonstrate interindividual variations in the metabolic activation of heterocyclic amines and their metabolic intermediates in primary cultures of HMECs in vitro.  相似文献   

2.
Sinc DNA adducts of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) are formed at relatively high levels in the rat pancreas but not liver, we examined the uptake of PhIP and its N-hydroxy metabolite (N-OH-PhIP) into pancreatic acini and hepatocytes to determine if differential tissue uptake was a factor modulating the formation of PhIP-DNA adducts. In addition, since the precursors of PhIP formation are two amino acids and since various amino acid transporters have been identified in the pancreas, the possible involvement of these transporters in the uptake of PhIP and N-OH-PhIP was investigated. The uptake both heterocyclic compounds into both tissue preparations was rapid, with maximal uptake occurring with 1-2 min. However, PhIP uptake into pancreatic acini was significantly (2-way ANOVA, P < 0.05) greater than uptake of N-OH-PhIP into pancreatic acini and the uptake of both PhIP and N-OH-PhIP into hepatocytes. Although uptake was rapid, efflux of both compounds from both tissue preparations was also rapid. However, the efflux rate constant (1.86 +/- 0.6/min, mean +/- SEM) for PhIP) was significantly lower (Student's t-test, P < 0.05) than that for N-OH-PhIP (4.14 +/- 0.04/min) from pancreatic acini. This, combined with the increased uptake of PhIP into pancreatic acini , suggests that there is substantial but reversible binding of PhIP in the pancreas. The uptake of both PhIP and N-OH-PhIP into pancreatic acini and hepatocytes was not affected by the presence of various amino acids in the incubation buffer, indicating that amino acid transporters are not involved in uptake of these compounds. Furthermore, uptake of both compounds did not appear to be dependent on metabolic energy supply. The above data, together with the high octanol:buffer partition coefficients (logP = 1.322 and 1.301 for PhiP and N-OH-PhIP respectively) suggest that both uptake and efflux of PhIP and N-OH-PhIP are consistent with a process of passive diffusion. The tissue binding characteristics for PhIP in the pancreas may create conditions whereby pancreatic cytochrome P450 1A1 can catalyse the formation of N-OH-PhIP. While N-OH-PhIP is not the ultimate reactive DNA binding species, it has been shown to directly bind to and form DNA adducts. Therefore, it is possible that the apparent selective accumulation of PhIP may contribute to the high level of PhIP-DNA adducts formed in the rat pancreas.  相似文献   

3.
The potent rat colon carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), unlike other food-borne heterocyclic amines, does not induce tumors in rat liver. This correlates with an extremely low level of PhIP-DNA adducts formed in this tissue, and together these observations suggest that PhIP is efficiently detoxified in the liver. In order to identify possible detoxification mechanisms, we assessed the effect of inhibition of glucuronidation, glutathione (GSH) conjugation and sulfation on PhIP metabolism and PhIP-induced DNA damage in rat hepatocytes. Hepatocytes isolated from rats pretreated with Aroclor 1254 metabolized PhIP to the same products found in vivo. N-Hydroxy-PhIP N3-glucuronide and N-hydroxy-PhIP N2-glucuronide were major and minor metabolites respectively. 32P-Postlabeling analysis of DNA from the PhIP-treated hepatocytes indicated the presence of two major adducts, one of which was identified as N-(deoxyguanosin-8-yl)-PhIP, and one minor adduct. There was no unscheduled DNA synthesis (UDS) in these cells. However, pretreatment of the hepatocytes with 1-bromoheptane and buthionine sulfoximine, which depletes GSH and prevents its resynthesis, resulted in a 15-fold increase in the formation of PhIP-DNA adducts, as well as in a high level of UDS. GSH depletion had no effect on the formation of detectable PhIP metabolites. Hepatocyte pretreatment with D-galactosamine, which inhibits glucuronidation, increased the formation of DNA adducts two-fold and UDS was increased similarly. D-Galactosamine decreased the formation of the two N-glucuronides of N-hydroxy-PhIP by 50-60%, but had no effect on other metabolites. Pentachlorophenol, which strongly inhibits sulfotransferases, decreased adduct formation slightly, but had essentially no effect on UDS or on the formation of PhIP metabolites. These results indicate that metabolic conjugation pathways involving GSH and glucuronidation may play an important role in protecting rat liver against PhIP carcinogenesis.  相似文献   

4.
Precision-cut liver slices prepared from Aroclor 1254 pretreated male rats were used to investigate the metabolism of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP). The acetyltransferase and sulfotransferase inhibitors, pentachlorophenol (PCP) and 2,6-dichloro-4-nitrophenol (DCNP), and the cytochrome P450 inhibitor, alpha-naphthoflavone (ANF), were used to modulate PhIP metabolism and DNA and protein adduct formation. PCP and DCNP had similar effects on the formation of some PhIP metabolites. PCP and DCNP decreased the formation of 4'-(2-amino-1-methylimidazo[4,5-b]pyrid-6-yl)phenyl sulfate (4'-PhIP-sulfate) and 2-(hydroxyamino)-1-methyl-6-phenylimidazo[4,5-b]pyridine (N-hydroxy-PhIP)-glucuronide to 10% and 55% of controls, respectively. 2-Amino-1-methyl-4'-hydroxy-6-phenylimidazo[4,5-b]pyridine (4'-hydroxy-PhIP) was increased by 50% relative to control levels due to PCP and DCNP treatment. PCP and DCNP had different effects on the formation of other PhIP metabolites. Metabolite formation as percent of control for the uncharacterized metabolite, 'Peak A', was 50% and 100% in incubations with PCP and DCNP, respectively. Formation of 4'-hydroxy-PhIP-glucuronide was decreased to 10% of controls with PCP and increased to 147% of controls with DCNP. PCP and DCNP had no effect on the formation of an unidentified metabolite, 'Peak B'. ANF decreased metabolite formation by 60-95%. None of the enzyme inhibitors had a statistically significant effect on PhIP-DNA binding. Covalent binding of PhIP to protein was slightly decreased in incubations containing DCNP or PCP. The lack of significant changes in covalent binding to either DNA or protein suggests that additional pathways may be important in PhIP bioactivation in rat liver slices. With ANF, there was a significant decrease (35%) in protein binding. These observations on the effects of PCP, DCNP and ANF on PhIP metabolism as well as on covalent binding of PhIP to tissue macromolecules are in close agreement with what was reported earlier in hepatocytes. This indicates that tissue slices from various target tissues for tumorigenesis will be a useful in vitro tool for future studies on heterocyclic amine metabolism. This study provides another important example of the utility of precision-cut tissue slices to investigate xenobiotic metabolism and toxicity.  相似文献   

5.
Glucuronide conjugates of arylamines are thought to be important in the carcinogenic process. This study investigated the pH stability and synthesis of glucuronide conjugates of 4-aminobiphenyl and its N-hydroxy metabolites by human and dog liver. Both dog and human liver slices incubated with 0.06 mM [3H]-4-aminobiphenyl produced the N-glucuronide of 4-aminobiphenyl as the major product. After 2 hr of incubation, the N-glucuronide of 4-aminobiphenyl represented 52 and 27% of the total radioactivity recovered by HPLC in dog and human, respectively. When 4-aminobiphenyl, N-hydroxy-4-aminobiphenyl, or N-hydroxy-N-acetyl-4-aminobiphenyl was added to human microsomes containing [14C]UDP-glucuronic acid, a new product peak was detected by HPLC. At 0.5 mM, the rate of glucuronidation was N-hydroxy-N-acetyl-4-aminobiphenyl > N-hydroxy-4-aminobiphenyl > 4-aminobiphenyl. The rate of formation of the N-glucuronide of 4-aminobiphenyl was similar to that observed with benzidine and N-acetylbenzidine. The glucuronides of 4-aminobiphenyl and N-hydroxy-4-aminobiphenyl were both acid labile with T1/2 values of 10.5 and 32 min, respectively, at pH 5.5. The glucuronide of N-hydroxy-N-acetyl-4-aminobiphenyl was not acid labile with T1/2 values at pH 5.5 and 7.4 of 55 and 68 min, respectively. The glucuronide of 4-aminobiphenyl was the most acid labile conjugate examined. Thus, the glucuronide of 4-aminobiphenyl is a major product of dog and human liver slice metabolism and likely to play an important role in the carcinogenic process.  相似文献   

6.
Cooked food mutagens from fried meat and fish have recently been suggested to contribute to the etiology of breast cancer. Thus, the most prevalent of these compounds, i.e. 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine, or rather its more mutagenic N-hydroxylated metabolite (N-OH-PhIP), forms DNA adducts in mammary cells, including human mammary epithelial (HME) cells. The objective of this study was to determine the involvement of estrogen sulfotransferase (EST), the only sulfotransferase identified in HME cells, in the further bioactivation of N-OH-PhIP. These studies were done in vitro using human recombinant EST and in intact HME cells. Human recombinant EST increased the covalent binding of [3H]N-OH-PhIP to calf thymus DNA approximately 3.5-fold in the presence of the sulfotransferase co-substrate 3'-phosphoadenosine-5'-phosphosulfate at each N-OH-PhIP concentration (1, 10 and 100 microM) (n = 6, P < 0.001). In contrast, EST did not catalyze the DNA binding of two other cooked food mutagens, N-hydroxy-2-amino-3-methylimidazo[4,5-f]quinoline and N-hydroxy-2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline, which are mainly hepatocarcinogens. Cultured HME cells displayed high EST activity, which could be completely inhibited by 1 microM estrone. When the cells were incubated with [3H]N-OH-PhIP, binding to native DNA occurred at 60-240 pmol/mg DNA. This binding was inhibited to 55% of control by 1 microM estrone (P < 0.01, n = 8), suggesting that EST plays a significant role in carcinogen bioactivation in human breast tissue.  相似文献   

7.
This is the first demonstration of the use of accelerator mass spectrometry (AMS) as a tool for the measurement of 3H with attomole (10(-18) mol) sensitivity in a biological study. AMS is an analytical technique for quantifying rare isotopes with high sensitivity and precision and has been most commonly used to measure 14C in both the geosciences and more recently in biomedical research. AMS measurement of serially diluted samples containing a 3H-labeled tracer showed a strong correlation with liquid scintillation counting. The mean coefficient of variation of 3H AMS based upon the analysis of separately prepared aliquots of these samples was 12%. The sensitivity for 3H detection in tissue, protein, and DNA was approximately 2-4 amol/mg of sample. This high sensitivity is comparable to detection limits for 14C-labeled carcinogens using 14C AMS and demonstrates the feasibility of 3H AMS for biomedical studies. One application of this technique is in low-dose, dual-isotope studies in conjunction with 14C AMS. We measured the levels of 3H-labeled 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) and 14C-labeled 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) in rat liver tissue and bound to liver DNA and protein 4.5 h following acute administration of individual or coadministered doses in the range of 4-5100 pmol/kg of body weight. Levels of PhIP and MeIQx in whole tissue and bound to liver protein were dose-dependent. MeIQx-protein and -DNA adduct levels were higher than PhIP adduct levels, which is consistent with their respective carcinogenicity in this organ. Coadministration of PhIP and MeIQx did not demonstrate any measurable synergistic effects compared to administration of these compounds individually. These studies demonstrate the application of AMS for the low-level detection of 3H in small biological samples and for its use in conjunction with 14C AMS for dual-labeling studies.  相似文献   

8.
A human cytochrome P-450 (P450) 1B1 cDNA was expressed in Saccharomyces cerevisiae and the microsomes containing P450 1B1 were used to examine the selectivity of this enzyme in the activation of a variety of environmental carcinogens and mutagens in Salmonella typhimurium TA1535/pSK1002 or NM2009 tester strains, using the SOS response as an end point of DNA damage. We also determined and compared these activities of P450 1B1 with those catalyzed by recombinant human P450s 1A1 and 1A2, which were purified from membranes of Escherichia coli. The carcinogenic chemicals tested included 27 polycyclic aromatic hydrocarbons and their dihydrodiol derivatives, 17 heterocyclic and aryl amines and aminoazo dyes, three mycotoxins, two nitroaromatic hydrocarbons, N-nitrosodimethylamine, vinyl carbamate, and acrylonitrile. Among the three P450 enzymes examined here, P450 lB1 was found to have the highest catalytic activities for the activation of 11,12-dihydroxy-11,12-dihydrodibenzo[a,l]pyrene, 1,2-dihydroxy-1,2-dihydro-5-methylchrysene, (+)-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene, 11,12-dihydroxy-11,12-dihydrobenzo[g]chrysene, 3,4-dihydroxy-3,4-dihydrobenzo[c]phenanthrene, 3-amino-1,4-dimethyl-5H-pyrido[4,3-b]indole, 2-aminoanthracene, 3-methoxy-4-aminoazobenzene, and 2-nitropyrene. P450 1B1 also catalyzed the activation of 2-amino-3,5-dimethylimidazo[4,5-f]quinoline, 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline, 2-amino-3-methylimidazo[4,5-f]quinoline, 2-aminofluorene, 6-aminochrysene and its 1,2-dihydrodiol, (-)-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene, 1,2-dihydroxy-1,2-dihydrochrysene, 1,2-dihydroxy-1,2-dihydro-5,6-dimethylchrysene, 2,3-dihydroxy-2,3-dihydrofluoranthene, 3,4-dihydroxy-3,4-dihydro-7,12-dimethylbenz[a]anthracene, and 6-nitrochrysene to appreciable extents. However, P450 1B1 did not produce genotoxic products from benzo[a]pyrene, trans- 3,4-dihydroxy-3,4-dihydrobenzo[a]anthracene, trans-8,9-dihydroxy-8,9-dihydrobenzo[a]anthracene, 7,12-dimethylbenz[a]anthracene and its cis-5,6-dihydrodiol, 5-methylchrysene, 11,12-dihydroxy-11,12-dihydro-3-methylcholanthrene, 1,2-dihydroxy-1,2-dihydro-6-methylchrysene, benzo[c]phenanthrene, 2-amino-6-methyldipyridol[1,2-a:3',2'-d]imidazole, 2-acetylaminofluorene, benzidine, 2-naphthylamine, aflatoxin B1, aflatoxin G1, sterigmatocystin, N-nitrosodimethylamine, vinyl carbamate, or acrylonitrile in this assay system. P450 1B1 is expressed constitutively in extrahepatic organs, including fetal tissue samples, and is highly inducible in various organs by 2,3,7,8-tetrachlorodibenzo-p-dioxin and related compounds in experimental animal models. Thus, activation of procarcinogens by P450 lB1 may contribute to human tumors of extrahepatic origin.  相似文献   

9.
10.
1. The in vitro metabolism of 3,3',4,4'-tetrachloro-[14C]-biphenyl ([14C]-TCB) by hepatic microsomes from the Wistar rat was investigated with liver microsomes from the male, pregnant female and foetus. 2. Three hydroxylated metabolites (4-OH-3,3',4,5'-tetrachlorobiphenyl, 5-OH-3,3',4,4'-tetrachlorobiphenyl, and 6-OH-3,3',4,4'-tetrachlorobiphenyl) were identified by hplc and gc-ms after incubations of liver microsomes from the beta-naphthoflavone-pretreated male rat and TCB-treated pregnant rat. No metabolites of [14C]-TCB were found after incubation with foetal liver microsomes from dams pretreated with [14C]-TCB. The results indicate that the in vivo accumulation of 4-OH-tetraCB in the foetal compartment is probably due to transplacental transport rather than the formation of this metabolite in the foetus. 3. Pretreatment of the male rat with beta-naphthoflavone substantially induced the formation of hydroxylated metabolites, but pretreatment with phenobarbital and dexamethasone was without effect. Based on in vitro incubations of liver microsomes from the beta-naphthoflavone pretreated male rat, an apparent Km and Vmax of 4.5 microM and 240 pmol/mg protein/min respectively was determined for the metabolism of [14C]-TCB. The formation of phenolic metabolites of [14C]-TCB was most likely dependent on P4501A induction.  相似文献   

11.
The heterocyclic amine 2-amino-1-methyl-6-phenylimidazo[4,5-beta]pyridine NPhIP) is a major dietary component in individuals eating cooked meats or fish. This heterocyclic amine requires biochemical activation, mainly through cytochrome P4501A2, and can be detoxified chiefly by 4'hydroxylation through other cytochromes, and be in turn converted through phase 2 enzymes to readily excreted conjugates. The active form of PhIP is mutagenic in Salmonella typhimurium TA98 and is a useful substrate to study the possible chemoprotective action of phytochemicals. We found that black and green tea depressed the mutagenicity of PhIP in dose-related fashion, and decaffeinated tea was less powerful an inhibitor. This led to the study of caffeine, that displayed effective dose-related inhibition of the mutagenicity of PhIP. Other antioxidants such as lycopene, the active antioxidant from tomatoes, and daidzein and genistein from soy products, also had a dose-related inhibition of the mutagenicity of PhIP. We conclude that PhIP is a good substrate found in several human foods to determine the protective effect of phytochemicals from vegetables, and beverages.  相似文献   

12.
In this study the effect of piperonyl butoxide (PBO) on unscheduled DNA synthesis in precision-cut human liver slices has been examined. Liver slices prepared from tissue samples from five human donors were cultured in medium containing [3H]thymidine and 0-2.5 mM PBO using a dynamic organ culture system. After 24 h the liver slices were processed for autoradiographic examination of UDS. As positive controls, liver slices were also cultured with three known genotoxic agents, namely 2-acetylaminofluorene (2-AAF), aflatoxin B1 (AFB1) and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP). UDS was quantified as the net grain count in centrilobular hepatocytes and as the percentage of centrilobular hepatocyte nuclei with > 5 and > 10 net grains. Compared to control liver slice cultures PBO had no effect on UDS. In contrast, treatment with 0.02 and 0.05 mM 2-AAF, 0.002 and 0.02 mM AFB1 and 0.005 and 0.05 mM PhIP produced significant increases in net grain counts of centrilobular hepatocytes. The greatest induction of UDS was observed in liver slices treated with 0.05 mM PhIP. Treatment with 2-AAF, AFB1 and PhIP also produced increases in the number of centrilobular hepatocyte nuclei with > 5 and > 10 net grains. At the concentrations examined neither PBO, 2-AAF nor PhIP had any significant effect on replicative DNA synthesis in 24 h cultured human liver slices. In cultured liver slices treated with 0.02, but not 0.002, mM AFB1 a significant reduction in the rate of replicative DNA synthesis was observed. These results demonstrate that PBO does not induce UDS in cultured human liver slices. However, all three positive control compounds produced marked significant increases in UDS, thus confirming the functional viability of the human liver slice preparations used in this study. In conclusion, these results provide further evidence that PBO is a non-genotoxic agent which does not damage DNA in human liver.  相似文献   

13.
The heterocyclic aromatic amines, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) and 2-amino-3,4,8-trimethylimidazo[4,5-f]quinoxaline (4,8-DiMeIQx) are formed during frying of meat. PhIP and 4,8-DiMeIQx have, after metabolic activation, been shown to form adducts with DNA at the C8 of guanine both in vitro and in vivo. In order to investigate possible urinary biomarkers for estimation of the genotoxic dose of PhIP and 4,8-DiMeIQx, [3H]PhIP-dG, [3H]PhIP-DNA and [14C]4,8-DiMeIQx-DNA were injected i.p. to rats and the excretion of radioactivity in urine and faeces were measured. For all three [3H]PhIP-dG, [3H]PhIP-DNA and [14C]4,8-DiMeIQx-DNA 15-20% of the dose were excreted in the urine and 80-85% of the dose were excreted in the faeces. Urinary excretion showed maximum to 24 h (90%) with a rapid decline, 10% to 48 h and 0% to 72 h. Faecal excretion also showed maximum to 24 h (60%) with a slower decline, 30% to 48 h and 10% to 72 h. HPLC analysis of samples of urine and extracts from faeces, from rats dosed with [3H]PhIP-dG, showed that approximately 90% of the radioactivity co-eluted with PhIP-dG, indicating that PhIP-dG is excreted unmetabolized. HPLC analysis of samples of urine and extracts from faeces, from rats dosed with [3H]PhIP-DNA, showed that approximately 85% of the radioactivity co-eluted with PhIP-dG, indicating that PhIP-DNA adducts is mainly excreted as nucleoside adducts. Approximately 5% of the radioactivity excreted in the urine co-eluted with PhIP-G, indicating loss of deoxyribose. HPLC analysis of samples of urine and extracts from faeces, from rats dosed with [14C]4,8-DiMeIQx-DNA, showed that approximately 90% of the radioactivity co-eluted with 4,8-DiMeIQx-dG, indicating that 4,8-DiMeIQx-DNA adducts is mainly excreted as nucleoside adducts. Man is able to eliminate compounds of a higher mol. wt in the urine than the rat, the percentage of PhIP-dG and 4,8-DiMeIQx eliminated in the urine of man would therefore be expected to be higher than in the rat. Measurement of urinary nucleoside adducts of PhIP and 4,8-DiMeIQx could therefore provide a basis for the development of a biomonitoring strategy for the genotoxic dose of these food derived HAA.  相似文献   

14.
Several novel N-(4,5-diphenylthiazol-2-yl)-N'-aryl or alkyl (thio)ureas and N-(4,5-diphenylthiazol-2-yl)alkanamides were prepared as potential acyl-CoA: cholesterol O-acyltransferase (ACAT) inhibitors. Synthesis was accomplished by reaction of 2-amino-4,5-diphenylthiazole with the suitable isocyanate, isothiocyanate or acyl chloride. Some analogues without the 5-phenyl substituent or both the phenyl groups in 4 and 5 position of the thiazole ring were also prepared. Moreover, some bioisosters of the title compounds in which the thiazole ring was replaced by an imidazole were synthesized starting from the 2-amino-4,5-diphenyl-1H-imidazole. The ability of synthesized compounds to inhibit ACAT was evaluated in vitro by measuring the formation of cholesteryl[14C]oleate from cholesterol and [1-14C]oleoyl-CoA in rat liver microsomes. Among the tested compounds, only some thiazole ureas were able to inhibit ACAT in a reasonable degree. N-(4,5-diphenylthiazol-2-yl)- N'-[2,6-bis(2-methylethyl)phenyl] urea (11) and N-(4,5-diphenylthiazol-2-yl)-N'-n-butyl urea (16) were the most active compounds in the series showing IC50 values in the low micromolar range.  相似文献   

15.
A carcinogen, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), was measured in beer and wine by HPLC. PhIP was found to be present in all brands of beer and wine analyzed. The concentrations of PhIP in beer and wine were 14.1 +/- 6.18 ng/l (mean +/- SD, n = 11) and 30.4 +/- 16.4 ng/l (n = 10) respectively.  相似文献   

16.
Chemopreventive effects of the antioxidants 1-O-hexyl-2,3,5- trimethylhydroquinone (HTHQ), 3-O-ethylascorbic acid (EAsA), 3-O-dodecylcarbomethylascorbic acid (DAsA), green tea catechins (GTC) and ellagic acid on 2-amino-1-methyl-6- phenylimidazo[4,5-b]pyridine (PhIP)-induced mammary carcinogenesis were examined in female F344 rats. Groups of 20-21 6-week-old rats were maintained on a powdered diet containing 0.02% PhIP alone, PhIP together with 0.5% HTHQ, 1% EAsA, 1% DAsA, 1% GTC or 0.1% ellagic acid, these antioxidants alone or basal diet alone without supplement for 52 weeks. The survival rates of PhIP plus antioxidant groups at the end of the experiment were higher than that of the PhIP alone group. Sequential observation of palpable mammary tumors demonstrated only one tumor by week 52 in the PhIP plus HTHQ group, whereas 40% of the rats receiving PhIP alone had tumors by this time point. The final incidence of mammary adenocarcinomas was significantly decreased in the PhIP plus HTHQ group (4.8%, P < 0.01) as compared to the PhIP alone value (40%). Although statistically not significant, incidences of adenocarcinomas in the other antioxidant-treated groups (23.8-28.6%) were also lower than in the PhIP alone group. Furthermore, the incidence of large intestinal tumors in the PhIP plus HTHQ group (0%) showed a tendency to decrease relative to the PhIP alone group (16.7%). These results indicate that antioxidants, particularly HTHQ, exert a potent chemopreventive action against PhIP-induced carcinogenesis.  相似文献   

17.
The contribution of Phase II conjugation reactions to human disposition of 2-amino-3,8-dimethylimidazo-[4,5-f]quinoxaline (MelQx) was investigated by analysis of urine for MelQx and its sulfamate and glucuronide metabolites. Subjects consumed pan-fried fish, beef, or bacon and collected 0-12 and 12-24-h postconsumption urine samples. MelQx content of the samples was determined both with and without acid treatment that quantitatively hydrolyzes the Phase II conjugates. The amount of unconjugated MelQx in the urine of seven subjects ranged between 2 and 36 ng in the first 12-h sample and was undetectable in the second. Hydrolysis increased the MelQx content 3-13-fold in the urine of six subjects, while the urine of one subject showed no significant change. Unconjugated MelQx excreted in urine was found to range between 0.5 and 4.7% of the ingested dose. In acid-treated urine the amount of MelQx was found to range between 1 and 14% of the ingested dose. A method for isolating the acid-labile conjugates in urine was developed, which included the following steps: acetone/methanol precipitation; solid-phase extraction; ion exchange fractionation, normal phase aminopropyl fractionation, and reverse phase high pressure liquid chromatography separation of the metabolites. Acidic hydrolysis of the fractions obtained in the last step, followed by gas chromatography-mass spectrometry analysis of the MelQx produced, was used to confirm the presence of the sulfamate and the glucuronide metabolites in human urine. The results provide evidence that glucuronidation and amine sulfamation are significant pathways of detoxification of MelQx in humans. In addition, the increased amount of MelQx released after acid hydrolysis facilitates the quantitative analysis of urinary MelQx.  相似文献   

18.
A photoaffinity analogue, [beta-32P]5-azido-UDP-GlcA, was used to photolabel the enzymes that utilize UDP-GlcA in cartilage microsomes and rat liver microsomes. SDS-polyacrylamide gel electrophoresis analysis of photolabeled cartilage microsomes, which are specialized in chondroitin sulfate synthesis, showed a major radiolabeled band at 80 kDa and other minor radiolabeled bands near 40 and 60 kDa. Rat liver microsomes, which are enriched for enzymes of detoxification by glucuronidation, had a different pattern with multiple major labeled bands near 50-60 and 35 kDa. To determine that the photolabeled 80-kDa protein is the GlcA transferase II, we have purified the enzyme from cartilage microsomes. This membrane-bound enzyme, involved in the transfer of GlcA residues to non-reducing terminal GalNAc residues of the chondroitin polymer, has now been solubilized, stabilized, and then purified greater than 1350-fold by sequential chromatography on Q-Sepharose, heparin-Sepharose, and WGA-agarose. The purified enzyme exhibited a conspicuous silver-stained protein band on SDS-polyacrylamide gel electrophoresis that coincided with the major radiolabeled band of 80 kDa. SDS-polyacrylamide gel analysis of photoaffinity-labeled active fractions from the Q-Sepharose, heparin-Sepharose, and WGA-agarose also indicated only the single radiolabeled band at 80 kDa. Intensity of photolabeling in each of the fractions examined coincided with enzyme activity. The photolabeling of this 80-kDa protein was saturable with the photoprobe and could be inhibited by the addition of UDP-GlcA prior to the addition of the photoprobe. Thus, the photolabeling with [beta-32P]5-azido-UDP-GlcA has identified the GlcA transferase II as an 80-kDa protein. The purified enzyme was capable of transferring good amounts of GlcA residues to chondroitin-derived pentasaccharide with negligible transfer to pentasaccharides derived from hyaluronan or heparan.  相似文献   

19.
Escherichia coli lacZ strains CC107-CC111, which detect specific frameshift mutations, were used to study the mutational specificities of 2-nitro-3-methylimidazo[4,5-f] quinoline (NO2-IQ) and rat hepatic S9-activated 2-amino-3-methylimidazo[4,5-f]quinoline (IQ). New constructs were made in which UvrABC-dependent excision repair was eliminated (strains DJ3107-DJ3111), followed by introduction of plasmid pYG219 conferring acetyl CoA:arylamine N-acetyltransferase/acetyl CoA:arylhydroxylamine O-acetyltransferase (NAT/OAT) activity (strains DJ3207-DJ3211). Sensitivity to mutagens was greatly enhanced. The mutational specificity of NO2-IQ was identical to that of the corresponding amine, IQ. The most prominent mutations caused by the two compounds were -2(CGGC) and 1(CG) frameshifts. +1(AT) Frameshifts play a minor role in the pattern of mutational specificity. Induction of all three mutations was similarly influenced by NAT/OAT activation and UvrABC-dependent excision repair. These new tester strains provide an effective tool for the study of aromatic amine mutational specificity and the influences of excision repair and NAT/OAT activation.  相似文献   

20.
1. Tissues other than the liver can contribute significantly to the drug-metabolizing capacity of an animal. In the current study, the glucuronidation of several aglycones in microsomes from the small intestinal mucosa of rat and rabbit has been investigated and compared with glucuronidation in liver microsomes. 2. UDP-glucuronosyltransferase activities in intestinal microsomes were generally higher in rabbit when compared with rat, ranging from 200 to 300% for 1-naphthol, 2-naphthol, 4-methylumbelliferone, 2-hydroxybiphenyl and 4-hydroxybiphenyl. 3. In contrast, hepatic activities were much higher in rat than in rabbit, ranging from 300 to 400% for 1-naphthol, 2-naphthol, 4-methylumbelliferone, 2-hydroxybiphenyl and testosterone; and from 150 to 250% for 4-nitrophenol and diclofenac. 4. In rabbit, activities in the small intestinal mucosa were comparable (70-100%) with hepatic activities for most aglycones. In rat, intestinal mucosa activities were much lower than in liver, with activities toward 1-naphthol, 2-naphthol, 4-nitrophenol, 4-methylumbelliferone, 2-hydroxybiphenyl and 4-hydroxybiphenyl in the small intestine representing 5-15% of hepatic activities. 5. With a higher intestine:liver activity ratio, intestinal UDP-glucuronosyltransferases could be anticipated to contribute more to overall drug glucuronidation in rabbit as compared with rat, thereby contributing more to reducing drug bioavailability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号