首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 43 毫秒
1.
2.
The heat transfer coefficient has been measured for a heated phosphor-bronze sphere (diam. 2.0, 3.0 or 5.56 mm) added to a bed of larger particles, through which air at room temperature was passed. The bronze heat transfer sphere was attached to a very thin, flexible thermocouple and was heated in a flame to before being immersed in the bed. The cooling of the bronze sphere enabled the heat transfer coefficient, h, to be measured for a variety of U/Umf, as well as diameters of both the particles in the bed and the heat transfer sphere. It was found that before the onset of fluidisation, h rose with U, but h reached a constant value for U?Umf. These measurements indicate that in this situation (of a relatively small particle in a bed of larger particles) all the heat transfer is between the hot bronze sphere and the gas flowing over it. Consequently, a Nusselt number, based on the thermal conductivity of the gas, is easy to define and for U?Umf (i.e. a packed bed), Nu is given by
  相似文献   

3.
This paper focuses on the effect of surfactants on the mass transfer parameters (volumetric mass transfer coefficient kLa and liquid-side mass transfer coefficient kL). Tap water and aqueous solutions with surfactants (anionic, cationic and non-ionic at concentrations up to are used as liquid phases. The bubbles are generated into a small-scale bubble column having an elastic membrane with a single orifice as gas sparger. To understand the effects of the surfactants on the mass transfer, not only the static surface tension is used, but also the characteristic adsorption parameters like the surface coverage ratio at equilibrium Se. The liquid-side mass transfer coefficient is obtained from the ratio of the volumetric mass transfer coefficient (measured by a chemical method) and the specific interfacial area. These two parameters are obtained simultaneously. The methods used to obtain these parameters are described in Painmanakul et al. [2005. Effects of surfactants on liquid-side mass transfer coefficients. Chemical Engineering Science 60, 6480-6491].Whatever the liquid phase, three zones are found on the liquid-side mass transfer coefficient variation with the bubble diameter. For bubble diameters less than 1.5 mm, whatever the liquid phases, the kL values are roughly constant at . For bubble diameters greater than 3.5 mm, the kL values do not vary much with the bubble diameter, but depend on the surfactant concentration. For bubble diameters between 1.5 and 3.5 mm, the kL values increase from to the value reached at 3.5 mm. This increase depends on the surfactants. Higbie's model does not represent the kL values for bubble diameters greater than 3.5 mm, even though there is a small amount of surfactant in the liquid phase. Thus, a model is proposed for each zone described above. Explanations are also proposed for the effect of the surfactant on the kL values for each of the above zones.  相似文献   

4.
Gas film mass transfer coefficients (kGat,kGaw) and liquid film mass transfer coefficients (kLaw) for packing materials used in biofilters and biotrickling filters for air pollution control were determined experimentally. Lava rock, polyurethane foam cube (PUF), Pall ring, porous ceramic beads, porous ceramic Raschig rings and compost-woodchips mixtures were investigated. The experiments were performed at gas velocities ranging from 100 to and liquid velocities of , i.e., a wide range that covers most biofilters and biotrickling filters. kGat in biofilter packings ranged from about 500 to , while kGaw and kLaw in biotrickling filters ranged from 100 to , and 1 to , respectively, depending on the packings and the conditions. This is markedly lower than mass transfer coefficients usually observed for conventional wet scrubbing. The gas film mass transfer coefficient (kGat) of 50:50% vol compost-woodchips mixture, a common biofilter packing, was greater than this of a 20% vol compost and 80% woodchips mixture, though the mass transfer was not increased by increasing further the volume fraction of compost. All compost mixtures exhibited a greater gas film mass transfer coefficient than lava rock or other synthetic materials. The mass transfer coefficients of compost mixtures was also influenced by packing method and it was directly proportional to the surface area of the bulking agents added. The gas film mass transfer coefficient (kGaw) of five biotrickling filter packing materials increased linearly with gas velocity. The effect of liquid on the gas film mass transfer coefficient was not significant. Of all the biotrickling filter packings, the porous ceramic beads had the highest gas and liquid film mass transfer coefficients followed by lava rock, porous ceramic rings, 1 in Pall ring and PUF cubes. The liquid film mass transfer coefficient (kLaw) was directly proportional to liquid velocity and the effect of gas velocity was negligible. Several correlations allowing prediction of mass transfer coefficients are presented in Part 2 of this paper.  相似文献   

5.
Fischer-Tropsch synthesis (FTS) was carried out in a fixed bed reactor with a highly effective cobalt catalyst for wax production. The procedure for reducing the inactive cobalt oxide to the active cobalt catalyst was examined by X-ray diffraction (XRD) and temperature-programmed reduction (TPR). The results showed that 300 ml/min H2 at 350 °C for 16 h was suitable for reducing the inactive Co oxides to active metallic Co sites. In the case of the powder and pellet type cobalt catalysts with a reactant (H2/CO = 2:1) flow rate of 15 gcat min L−1, catalyst deactivation occurred as a result of mass transfer limitations of the hydrocarbon and water produced on the catalyst. On the other hand, the pellet type cobalt catalyst with a reactant flow rate of 45 gcat min L−1 showed activity not only for liquid hydrocarbon (C5+) formation but also for gas product (CH4 and CO2) formation. In particular, the methane yield reached almost 20% due to heat transfer limitation in the catalyst. Considering the heat and mass transfer limitations in the cobalt catalyst, a Co-foam catalyst with an inner metallic foam frame and an outer cobalt catalyst was developed. SEM-EDS Co-mapping revealed the cobalt atoms to be distributed equally over the surface of the Co-foam catalyst. The Co-foam catalyst was highly selective toward liquid hydrocarbon production and the liquid hydrocarbon productivity at 203 °C was 52.5 ml  h−1, which was higher than that by the Co-pellet. In addition, the chain length probability, α, by the Co-foam catalyst was 0.923 and wax formation was especially favored.  相似文献   

6.
It is well established that pressure drop and liquid holdup under trickle flow conditions are functions of the flow history. However, the extent of possible variation of these and other critical hydrodynamic parameters has not been fully quantified. In this study, specifically defined prewetting procedures are used as limiting cases for hydrodynamic hysteresis. These are:
Non-prewetted.
Levec prewetted: the bed is flooded and drained and after residual holdup stabilisation the gas and liquid flows are introduced.
KanL prewetted: the bed is operated in the pulse flow regime (by increasing liquid velocity) after which liquid flow rate is reduced to the desired set point (all at the desired gas flow rate).
KanG prewetted: the bed is operated in the pulse flow regime (by increasing gas velocity) after which gas flow rate is reduced to the desired set point (all at the desired liquid flow rate).
Super prewetted: the bed is flooded and gas and liquid flows are introduced once draining commences.
It is shown that the upper limiting case for pressure drop is the KanL mode of operation. The lower limiting cases are the non-prewetted and Levec prewetted modes (these coincide). Pressure drop may vary by as much as 700% even for prewetted beds. Liquid holdup is different in all five prewetting modes. The upper limiting case is the KanG mode of operation, while the lower limiting case is the non-prewetted mode (KanG holdup is approximately 160% that of non-prewetted mode holdup at ). At low gas velocities the KanL holdup can be 400% of that of the non-prewetted beds. Importantly, the lower limiting case for prewetted beds is the Levec mode. Holdup in the KanG mode may be as much as 130% of the holdup in the Levec mode (at ).The effect of hydrodynamic multiplicity of the volumetric mass transfer coefficient is measured by the desorption of oxygen from water into nitrogen. In this case the different prewetting procedures result in three distinct regions, the upper region being the Kan and Super prewetted beds, the intermediate region being the Levec prewetted bed and the lower region being the dry bed. Mass transfer coefficients in the upper region can be as much as 600% of that of the lower region and 250% of that of the intermediate region. Evidently, prewetting (and even pulsing flow prewetting) does not guarantee that the bed is operating at the maximum values of pressure drop, holdup and mass transfer coefficient. Evidence of operation in between the limiting cases is presented. These non-limiting cases can be reached in multiple ways.  相似文献   

7.
Instantaneous local fluid-solid heat transfer coefficient (ht) in a laboratory scale trickle-bed was measured using a constant-voltage anemometry technique. It was observed that convective heat transfer rate in the liquid-rich pulses was approximately 4 times that in gas-continuous bases for the air-water system. Time-averaged heat transfer rate was found to be positively influenced by both gas and liquid flow rates, with a stronger dependence on the latter. Heat removal efficiency, taking pressure drop penalty into account, suggested an optimum at intermediate liquid flow rate. Based on the measurements, a four-parameter heat transfer model featuring heat transfer coefficients in liquid-rich pulses (htp) and gas-continuous bases (htb), pulsing frequency and pulse fraction was developed to characterize transient ht under various flow regimes. This model can be used in any trickle-bed reactor simulation that accounts for the dynamic interactions of catalytic reactions and heat transfer. It was found that while htp and htb correspond to liquid-solid and gas-solid heat transfer, respectively, and are determined mainly by the fluid properties, pulsing frequency and pulse fraction are the factors characterizing different flow regimes. Pulsing frequency, which can significantly impact reaction, may be tuned by selecting appropriate packing size, since smaller sizes generate higher frequency pulses. For example, a two-fold higher frequency was detected in packing as compared to that with packing. Flow regime evolution along the column axial location was identified visually, while the dispersed bubbling flow retreating to pulsing flow owing to gas bubble coalescence was evidenced by the heat transfer measurements.  相似文献   

8.
A complex computational mass transfer model (CMT) is proposed for modeling the chemical absorption process with heat effect in packed columns. The feature of the proposed model is able to predict the concentration and temperature as well as the velocity distributions at once along the column without assuming the turbulent Schmidt number, or using the experimentally measured turbulent mass transfer diffusivity. The present model consists of the differential mass transfer equation with its auxiliary closing equations and the accompanied formulations of computational fluid dynamics (CFD) and computational heat transfer (CHT). In the mathematical expression for the accompanied CFD and CHT, the conventional methods of k-ε and are used for closing the momentum and heat transfer equations. While for the mass transfer equation, the recently developed concentration variance and its dissipation rate εc equations (Liu, 2003) are adopted for its closure. To test the validity of the present model, simulations were made for a pilot-scale randomly packed chemical absorption column of 0.1 m ID and 7 m high, packed with 1/2 ceramic Berl saddles for CO2 removal from gas mixture by aqueous monoethanolamine (MEA) solutions (Tontiwachwuthikul et al., 1992 ) and an industrial-scale randomly packed chemical absorption column of 1.9 m ID and 26.6 m high, packed with 2 stainless steel Pall rings for CO2 removal from natural gas by aqueous MEA solutions (Pintola et al., 1993). The simulated results were compared with the published experimental data and satisfactory agreement was found between them in both concentration and temperature distributions. Furthermore, the result of computation also reveals that the turbulent mass transfer diffusivity Dtvaries along axial and radial directions. Thus the common viewpoint of assuming constant Dt throughout the whole column is questionable, even for the small size packed column. Finally, the analogy between mass transfer and heat transfer in chemical absorption is demonstrated by the similarity of their diffusivity profiles.  相似文献   

9.
The aim of this work was to characterise hydrodynamics and mass transfer in a gas-liquid contactor containing static mixers (SMs). The originality of this study lies in the fact that these mixing organs are used with a gas continuous phase. Two types of SM were implemented in co-current flows, Statiflo and Lightnin. The pressure drop ΔP, the volumic interfacial area a and the volumic mass transfer coefficient kLa were measured in several configurations: horizontal flow, vertical up-flow and vertical down-flow. The influences of position and flow rates were studied in order to understand the behaviour of these contactors, and to optimise the operating conditions. As expected, the pressure drop was found to increase mainly with gas velocity but also with liquid velocity, and to reach 3300 Pa in the range of velocities studied (the gas flow rate varied between 4 and and the liquid flow rate between 0 and 100 L/h), far less than Sülzer SM. The volumic interfacial area and the volumic mass transfer coefficient showed the same changes, a varying between 100 and , and kLa reaching 0.07 L/s. This is interesting compared with other classical absorption processes: indeed, even if packing towers can provide the same range of values, the operating conditions are more drastic or the dimensions of the apparatuses are far larger than SM ones. The position was also found to have an influence on the hydrodynamic and mass transfer parameters (ΔP, a and kLa).  相似文献   

10.
Based on airlift configuration, a novel circulating jet-loop submerged membrane bioreactor (JLMBR) adapted to ammonium partial oxidation has been developed. Membrane technology and combined air and water forced circulation are adopted to obtain a high biomass retention time and to achieve a separate control of mixing and aeration. This study is intended to determine how gas-liquid mass transfer is affected by operating conditions. In a first approximation, liquid was assumed to be perfectly mixed. A classical non-steady state clean water test, known as the “gas out-gas in” method, was used to determine the gas-liquid mass transfer coefficient kLa. Air and recirculated liquid superficial velocities were gradually increased from 0.013 to and 0.0056 to , respectively. Subsequently, the gas-liquid mass transfer coefficient kLa varied from 0.01 to . It appears to be influenced by the combined action of air and recirculated liquid flowrates in the range and , respectively, for air and liquid. Correlations are proposed to describe this double influence. Experiments were performed on tap water and a culture medium used for the autotrophic growth of nitrifying bacteria, respectively. Oxygen transfer appeared to be not significantly affected by the mineral salt encountered in this medium.  相似文献   

11.
The work focuses on a hybrid process for treating air charged with a hydrophobic volatile organic compound (VOC), coupling an absorption process with membrane pervaporation in order to reuse the absorbent. Toluene was chosen as the target VOC. Four topics were investigated: choice of the absorbent, hydrodynamics and mass transfer in a packed column, regeneration by pervaporation and finally analysis of the coupling of the two processes. In a previous study, 7 absorbents were compared with regard to experimental data (gas-liquid equilibrium constants, viscosity) and data from the literature. Di(2-ethylhexyl) adipate (DEHA) was shown to be the most suitable absorbent. In the first part of this work, experiments in a packed column showed that the viscosity of DEHA led to an increase in pressure drop, which nevertheless remained at a reasonable level. Mass transfer experiments were performed and kinetic constants (KLa) calculated. It was proven than washing with DEHA is highly efficient for toluene absorption. The most innovative part of the work is the regeneration of used absorbent by pervaporation. PDMS was chosen as the active membrane layer. Pervaporation flow rates of toluene were measured for the DEHA-toluene solutions corresponding to column foot concentrations. Transfer resistance is mainly controlled by the liquid boundary layer close to the membrane. The system was modelled and several interesting conclusions deduced. Solving the equations by means of a numerical method enabled calculation of the column height and membrane surface area required to treat a gas flow charged with of toluene.  相似文献   

12.
The wall-to-fluid mass transfer coefficient was obtained from coated wall dissolution experiments, for water flow through fixed beds of spheres with tube-to-particle diameter ratios of 2.9-11.6, and for particle Reynolds number (Re) in the range 3-200. The coefficients, in the form of dimensionless Sherwood numbers (Shwf), were shown to approach a nonzero limit as Re→0. The data were well-represented by the equation
  相似文献   

13.
The experimental study of gas dispersion in a vertical periodically, constricted, oscillatory meso-tube (OMT) is herein presented. Water was continuously pumped through the OMT in the laminar flow regime along with an oscillatory flow component superimposed into the net flow in a range of fluid oscillation frequency (f) and centre-to-peak amplitude (x0) of and 0-3 mm, respectively, in the presence of a very low superficial gas velocity . Bubble images were recorded with a CCD camera and analysed with Visilog® software. A bimodal distribution of bubble size was in general observed but the bubble size was found strongly dependent on the oscillatory flow mixing conditions imposed into the fluid. A number fraction of micro-bubbles (with an equivalent diameter, Deq, equal or bellow 0.2 mm) up to 60% was generated with increasing values of x0 (i.e. 3 mm) and values of f in the range . Furthermore, it is demonstrated that the Sauter mean diameter, D32, and the specific interfacial area, a, can be fined tune by setting both f and x0 in this studied range. The high number fraction of micro-bubbles was concluded to have a positive impact in enhancing the liquid-side mass transfer coefficient, kL. Globally, the differences in bubbles sizes were found to play a marginal effect in the global enhancement of the kLa in the meso-tube in comparison with the intensive contact experimented by the bubbles rising in the oscillatory flow. The higher order of magnitude of the kL values found in this work (up to ) is promising for running numerous industrial gas-liquid flows processes through smaller and better, while aeration of biotransformations can be run more efficiently, as supported by our recent proof-of-concept studies carried out in the platform.  相似文献   

14.
To determine the oxygen mass transfer in clean water in biofilters, a method based on the follow up of the oxygen fraction in the off gas during the oxidation of sulphite in excess has been evaluated and applied to a pilot-scale unit (250 L, superficial gas velocity from 0 to , superficial liquid velocity from 0 to ). Tests performed on a two-phase reactor showed that, without any cobalt addition, standard oxygen transfer efficiencies (SOTE) obtained from the proposed method are not statistically different from those issued from the standardised method. A relationship has been proposed to express SOTE values as a function of the conductivity, and the influence of the gas and liquid velocities on SOTE and kLa has been investigated.  相似文献   

15.
Researches on two-phase transfer and reaction processes in microchannnels are important to the design of multiphase microchemical systems. In the present work, hydrodynamics and mass transfer characteristics in cocurrent gas-liquid flow through a horizontal rectangular microchannel with a hydraulic diameter of have been investigated experimentally. Liquid side volumetric mass transfer coefficients were measured by absorbing pure CO2 into water and a 0.3 M NaHCO3 / 0.3 M Na2CO3 buffer solution. Interfacial areas were determined by absorbing pure CO2 into a 1 M NaOH solution. Two-phase flow patterns and pressure drop data were also obtained and analyzed. This paper shows that two-phase frictional pressure drop in the microchannel can be well predicted by the Lockhart-Martinelli method if we use a new correlation of C value in the Chisholm's equation. Liquid side volumetric mass transfer coefficient and interfacial area as high as about and , respectively, can be achieved in the microchannel. Generally, liquid side volumetric mass transfer coefficient increases with the increasing superficial liquid or gas velocity, which can be described satisfactorily by the developed empirical correlations. A comparison of mass transfer performance among different gas-liquid contactors reveals that the gas-liquid microchannel contactor of this study can provide at least one or two orders of magnitude higher liquid side volumetric mass transfer coefficients and interfacial areas than the others.  相似文献   

16.
The external loop airlift bubble column has been regarded as a promising type of gas-liquid or gas-liquid-solid biooreactor because of the liquid circulating flow between the riser and downcomer. A mini-scale column is useful and efficient in the process research and development for highly specialized materials such as fine chemicals, advanced bioproducts and biocatalysts utilized in two or three phase system. In this work, a mini-scale glass column of in volume was designed and characterized. The gas holdup εG in the riser was obtained by measuring the volume expansion through photographs taken with a digital camera. The liquid circulating velocity UL was measured by observing the time required for a tracer particle to travel a fixed distance in the downcomer through analysis of the images taken by a video camera. The gas-liquid volumetric oxygen transfer coefficient kLa and liquid-solid oxygen transfer coefficient kS were determined by our previous method in which the air oxidation of glucose was catalysed by the immobilized glucose oxidase gel beads suspended in the column to obtain a pseudo steady state concentration of the dissolved oxygen and the corresponding constant rate of glucose consumption. It was shown that even such a mini-scale external loop bubble column could be characterized in terms of gas holdup, liquid circulating velocity and mass transfer properties according to our previous correlations proposed for the bench to pilot scale column.  相似文献   

17.
Based on an extensive experimental database (946 measurements) set up from the literature published over past 30 years, a new correlation relying on artificial neural network (ANN) was proposed to predict the basic pulsation frequency of pulsing flow in the trickle-bed reactors. Seven dimensionless groups employed in the proposed correlation were liquid and gas Reynolds (ReL,ReG), liquid Weber (WeL), gas Froude (FrG), gas Stokes (StG) and liquid Eötvös numbers and a bed correction factor (Sb). The performance comparisons of literature and present correlations showed that ANN correlation is significantly an improvement in predicting pulsation frequency with an AARE of 10% and a standard deviation less than 18%. The effects of the variables including the properties of fluid and bed, and flow rate of liquid and gas on pulsing frequency were investigated by ANN parametric simulations and the trends were compared with exiting experimental results that confirmed the coherence of the proposed method with the previous experiments.  相似文献   

18.
Computational Fluid Dynamics (CFD) is used to investigate mass transfer from Taylor bubbles to the liquid phase in circular capillaries. The liquid phase volumetric mass transfer coefficient kLa was determined from CFD simulations of Taylor bubbles in upflow, using periodic boundary conditions. The separate influences of the bubble rise velocity, unit cell length, film thickness, film length, and liquid diffusivity on kLa were investigated for capillaries of 1.5, 2 and diameter. The mass transfer from the Taylor bubble is the sum of the contributions of the two bubble caps, and the film surrounding the bubble. The Higbie penetration model is used to describe the mass transfer from the two hemispherical caps. The unsteady-state diffusion model of Pigford is used to describe the mass transfer to the downward flowing liquid film. The developed model for kLa is in good agreement with the CFD simulated values, and provides a practical method for estimating mass transfer coefficients in monolith reactors.  相似文献   

19.
20.
Hydrodynamic similarity in the fully developed zone of co-current upward gas-solid two-phase flow systems under different operating conditions was investigated by measuring the axial profiles of pressure gradient, radial profiles of solid concentration and particle velocity in two circulating fluidized bed (CFB) risers of 15.1 and 10.5 m high, with FCC and sand particles, respectively. The experimental data obtained from this work and in the literature show that when the scaling parameter, Gs/(ρpUg), is modified as , a detailed hydrodynamic similitude of the gas-solid flow in the fully developed zone of the risers under different operating conditions can be achieved. Furthermore, the experimental results from different gas-solid flow systems also show that as long as remains constant, there is the same solid concentration in the fully developed zone of different CFB risers with different particles. With the same , the local solid concentrations, the descending particle velocities, the cluster frequencies and the solid concentrations inside clusters in the fully developed zone of the risers all display the same axial and radial distribution, respectively. In other words, the empirical similarity parameter, , appears to have incorporated the effects of operating parameters (Gs and Ug), so that, the gas-solid flow in the fully developed zone of CFB risers under those different operating conditions but having the same shows similar micro- and macro-hydrodynamic characteristics. The study shows that the empirical similarity parameter, , is also independent of the upward gas-solid flow systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号