首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 147 毫秒
1.
纳米羟基磷灰石/壳聚糖复合微球的原位仿生制备及表征   总被引:1,自引:0,他引:1  
为解决纳米羟基磷灰石/壳聚糖(nHA/CS)复合微球中nHA团聚及分散不均的问题, 本研究在油包水的乳液体系中, 原位仿生制备了nHA/CS复合微球, 并与共混法制备的nHA/CS复合微球进行了对比研究。利用扫描电镜(SEM)、X射线能谱(EDS)、X射线衍射(XRD)、红外(FTIR)和激光粒度仪等手段对不同微球的理化性能进行表征。结果表明: 相比共混法, 原位仿生制备的nHA/CS复合微球形态圆整均匀, 分散性好, 粒径分布较窄, 平均粒径为8.62 μm, nHA晶体均匀分布在微球内部及表面, 并与CS基质以化学键结合。该复合微球有望用于骨组织工程及药物控制释放。  相似文献   

2.
茶多酚/聚乳酸复合纳米纤维膜的制备及抗菌性能研究   总被引:4,自引:1,他引:3  
采用静电纺丝技术,分别制备了聚乳酸(PLA)质量分数为8%的纳米纤维膜及茶多酚(TP)质量分数分别为0.5%、0.75%和1%的茶多酚/聚乳酸复合纳米纤维膜.借助扫描电子显微镜(SEM)观察和红外光谱分析,并利用振荡烧瓶法测试薄膜的抗茵性能.SEM图分析表明,添加TP对纳米纤维形态的分布影响不大.由红外光谱图分析可知,复合纳米纤维膜中确实存在茶多酚.抗茵结果表明,茶多酚/聚乳酸复合纳米纤维膜对大肠杆菌和金黄色葡萄球菌有良好的抗茵作用,并且随着纺丝液中TP含量的增加,抗茵性能不断提高,对金黄色葡萄球菌的抗菌效果也更好.  相似文献   

3.
利用静电纺丝制备出纳米羟基磷灰石(nHA)/玉米醇溶蛋白(zein)复合超细纤维。通过场发射扫描电镜、透射电镜观察了纳米羟基磷灰石/玉米醇溶蛋白复合超细纤维的形貌;利用红外光谱仪、X射线衍射仪对纳米羟基磷灰石/玉米醇溶蛋白复合超细纤维结构和性能进行表征,并进行了拉伸测试。结果表明,随着超细纤维中羟基磷灰石含量的增加,纤维的直径先减小后增大,纤维中纳米羟基磷灰石的结晶逐渐变好。相比于玉米醇溶蛋白超细纤维,含有质量分数为25%羟基磷灰石的复合超细纤维仍具有较好的力学性能。  相似文献   

4.
张乾  覃勇  崔作林 《功能材料》2004,35(Z1):2850-2852
利用纳米镍、酒石酸铜催化剂,通过碳的化学气相沉积法(CVD)分别制备出并列形态和"V"形态生长的碳纳米纤维,并通过透射电子显微镜(TEM)、扫描电子显微镜(SEM)对其进行了观察研究,发现生长在催化剂粒子上的碳纳米纤维在初始生长时的生长方向与催化剂粒子形状之间有密切关系.我们分析认为,在碳纳米纤维的生长过程中,碳在催化剂粒子中的扩散速度是控制步骤,并且决定催化剂粒子晶面上不同生长点的纤维生长速度.  相似文献   

5.
以DMF为溶剂,利用静电纺丝法制备了聚丙烯腈/聚乙烯吡咯烷酮/醋酸铜(PAN/PVP/Cu(OAc)2)复合纳米纤维,并借助于Design Expert软件采用Box-Behnken试验设计法及响应面法分析了不同组分的PAN/PVP/Cu(OAc)2对碳基复合纳米纤维电容的影响,用Solartron1470测其电化学性能.选取PAN、PVP及Cu(OAc)2作为影响电容的3个主要因素,并以电容作为考察对象,建立了二次多元回归模型;利用扫描电子显微镜(SEM)观测了纤维的直径和表面形貌,同时利用XRD分析了碳基复合纳米纤维的物相.结果表明,模型预测的纤维直径与真实值较为符合,说明该模型能有效地预测电容.优化后的碳基复合纳米纤维为C/Cu/CuO/Cu2O复合物,同时纤维变细,表面较粗糙且部分纤维发生断裂.  相似文献   

6.
利用静电纺丝技术制备了PET纳米纤维填料,絮凝-纳米纤维填料法处理染料废水中的酸性金黄G.研究了絮凝剂浓度、絮凝沉降时间、纳米纤维的结构等因素对酸性金黄G去除率的影响.采用扫描电镜(SEM)、紫外光谱仪(UV-vis)、红外光谱仪(FT-IR)进行检测及表征.实验结果表明,不加絮凝剂预处理,过滤75min后纳米纤维填料对酸性金黄G的去除率下降至47.5%.采用絮凝-纳米纤维填料法处理染料废水,去除率最大可达100%.而絮凝剂浓度为10mg/L时,过滤75min后去除率下降至87.5%;絮凝剂浓度700mg/L时,过滤75min后去除率仍可达到100%.  相似文献   

7.
以壳聚糖(CS)、聚乙烯醇(PVA)和纳米石墨粉(G)为原料,利用静电纺丝技术分别制备了壳聚糖/聚乙烯醇共混纳米纤维及壳聚糖/聚乙烯醇/纳米石墨粉复合纳米纤维,采用原位聚合法在纤维表面聚合导电聚合物聚苯胺,得到具有优良导电性能的聚合CS/PVA和聚合CS/PVA/G复合纳米纤维。通过扫描镜、X射线衍射、红外光谱等测试手段对纤维的形貌和结构进行表征。结果表明,聚苯胺均匀包覆在经原位聚合的复合纳米纤维表面,提高了纤维的导电性能,纳米石墨粉与聚苯胺形成插入化合物进一步提高了纤维的导电性能。  相似文献   

8.
彭文娟  宋国君  汪学军 《材料导报》2008,22(Z1):163-165
采用热致相分离法制备了一系列左旋聚乳酸/纳米羟基磷灰石(PLLA/n-HA)纳米纤维状复合支架材料,并采用扫描电境、万能材料试验机和体外降解实验对其进行了表征.实验结果表明,复合支架的孔隙率高达90%;扫描电镜观测到复合支架材料为三维多孔的网状纳米纤维状结构,其纳米纤维直径在200~500nm的范围内;万能材料试验机测得复合支架的压缩模量最大可提高至纯聚乳酸支架的3倍.  相似文献   

9.
通过两步法制备聚酰亚胺(PI)纳米纤维,利用均苯四甲酸二酐(PMDA)和4,4′-二胺基二苯醚(ODA)合成聚酰亚胺酸(PAA)纺丝液,采用高压静电纺丝技术制备PAA纳米纤维,在高温下亚胺化获得PMDA-ODA型PI纳米纤维,研究了溶液浓度、纺丝距离及纺丝电压对纤维形貌的影响,用扫描电子显微镜(SEM)对纤维形貌进行了表征。结果表明:当PAA溶液浓度为20wt%,纺丝距离为18cm,纺丝电压为20kV时得到的纤维形貌较好。同时利用红外光谱仪、热重分析仪对其化学结构和热稳定性也进行了表征。  相似文献   

10.
静电纺丝制备聚芳硫醚砜纳米纤维初探   总被引:1,自引:2,他引:1  
本文初步探索了静电纺丝法制备聚芳硫醚砜(PA SS)纳米纤维。选取苯酚和四氯乙烷混合溶剂作PA SS纺丝液的溶剂,考察了纺丝液组成、环境温度、电压和收集距离对PA SS纳米纤维形貌的影响。  相似文献   

11.
To mimic the nano-fibrous structure of the natural extracellular matrix, a nano composite scaffold of poly(l-lactic acid)/hydroxyapatite(PLLA/HAP) was fabricated by a thermally induced phase separation method. The characterization of the composite scaffold showed that the scaffold had a nano-fibrous PLLA network (fiber size 100–750 nm), an interconnective microporous structure (1–10 μm) and high porosity (>90%). HAP was homogeneously distributed in the scaffold, as a result, the compressive modulus of PLLA/HAP (80:20, w/w) increased to 3.15-fold compared with that of a pure PLLA scaffold. Incorporating HAP into PLLA network also buffered the pH decline in vitro degradation and enhanced the protein adsorption of the composite scaffold significantly. The new nano composite scaffold is potentially a very promising scaffold for tissue engineering.  相似文献   

12.
As part of a broader effort to establish processing-structure–property relationships in PLLA/nHA, which is currently under consideration for bioresorbable scaffolds for bone repair, hot stage optical microscopy and differential scanning calorimetry have been used to investigate the solidification behavior of a series of medical grade PLLA/nHA nanocomposites. The presence of the nHA resulted in an increase in the number of spherulites per unit volume during isothermal crystallization, but there was a substantial decrease in the spherulite growth rate with increasing nHA content in the temperature range 100–130 °C, argued to be associated with a significant increase in the melt viscosity in the presence of the nHA. The consequences for the global solidification rates and the phase structure of the PLLA/nHA nanocomposites are discussed.  相似文献   

13.
Supercritical carbon dioxide processing of poly-L-lactide (PLLA)/hydroxyapatite (nHA) nanocomposites was investigated as a means to prepare foams suitable as scaffolds in bone tissue engineering applications. For given foaming parameters, addition of nHA to the PLLA gave reduced cell sizes and improved homogeneity in the size distribution, but did not significantly affect the degree of crystallinity, which remained of the order of 50 wt% in all the foams. The compressive modulus and strength were primarily influenced by the porosity and there was no significant reinforcement of the matrix by the nHA. The mechanical properties of the foams were nevertheless comparable with those of trabecular bone, and by adjusting the saturation pressure and depressurization rate it was possible to generate porosities of about 85 %, an interconnected morphology and cell diameters in the range 200-400 μm from PLLA containing 4.17 vol% nHA, satisfying established geometrical requirements for bone replacement scaffolds.  相似文献   

14.
Recent research shows that the addition of chitosan microspheres (CMs) to poly(L-lactide) (PLLA) can result in a composite scaffold material with improved biocompatibility and mechanical properties for tissue engineering applications. However, research regarding the influence of CMs on scaffold degradation is absent in the literature. This paper presents a study on the in vitro degradation of scaffolds made from PLLA with CMs. In this study, the PLLA/CMs scaffolds with a 25% ratio of CMs to PLLA were immersed in phosphate-buffered saline (PBS) solution at 37°C for 8 weeks. The in vitro degradation of the scaffolds was investigated using micro-computed tomography (μCT), weight loss analysis, Raman spectroscopy, and differential scanning calorimetry (DSC). Microstructure changes during degradation were monitored using μCT. The μCT results were consistent with the results obtained from Raman spectra and DSC analysis, which reflected that adding CMs into PLLA can decrease the degradation rate compared with pure PLLA scaffolds. The results suggest that PLLA/CMs scaffold degradation can be regulated and controlled to meet requirements imposed a given tissue engineering application.  相似文献   

15.
Electrospun Nanofiber sheets have been shown to mimic the structure of extracellular matrix (ECM). Although these nanofibers have shown great potential for use as tissue engineering scaffolds, it is difficult for the electrospun nanofiber based sheets to be shaped into the desired three-dimensional structure. In this study, poly(L-lactic acid) (PLLA), a biodegradable and biocompatible polyester, was electrospun to produce nanofibers that were treated with an amino group containing base in order to fabricate polymeric nanocylinders. The aspect ratio of the PLLA nanocylinders was tunable by varying the aminolysis time and density of the amino group containing base. The effects of changes in nanofibrous morphology of the PLLA nanocylinders/macro-porous gelatin scaffolds on cell adhesion and proliferation were evaluated. The results revealed different cell morphology, adhesion, and proliferation in the nanocylinders composite gelatin scaffold versus gelatin scaffold alone. Confocal laser scanning microscopy observation showed more spreading and a more flattened cell morphology after NIH3T3 cells were cultured on PLLA nanocylinders/gelatin scaffolds for 10 hours and 4 days. These results indicate that the gelatin/PLLA nanocylinder composite is a promising way to fabricate 3D nanofibrous scaffolds that accelerates cell adhesion and proliferation for tissue engineering.  相似文献   

16.
In this paper, a novel porous scaffold for bone tissue engineering was prepared with nano-hydroxyapatite/collagen/Poly-l-lactic acid (PLLA) composite reinforced by chitin fibres. To enhance the strength of the scaffold further, PLLA was linked with chitin fibres by Dicyclohexylcarbodimide (DCC). The structures of the reinforced scaffold with and without linking were characterized by Scanning Electron Microscopy (SEM). The chemical characteristics of the chitin fibres with and without linking were evaluated by Fourier-transformed infrared (FTIR) spectroscopy. The mechanical performance during degradation in vitro was investigated. The results indicated that the nano-hydroxyapatite/collagen/PLLA composite reinforced by chitin fibres with linking kept better mechanical properties than that of the composite without linking. These results denoted that the stronger interfacial bonding strength of the scaffold with linking could decrease the degradation rate in vitro. The reinforced composite with the link-treatment can be severed as a scaffold for bone tissue engineering.  相似文献   

17.
Three dimensional (3D) biodegradable porous scaffolds play a key role in cartilage tissue repair. Freeze-drying and cross-linking techniques were used to fabricate a 3D composite scaffold that combined the excellent biological characteristics of human-like collagen (HLC) and the outstanding mechanical properties of nano-hydroxyapatite (nHA). The scaffolds were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and compression tests, using Relive® Artificial Bone (RAB) scaffolds as a control. HLC/nHA scaffolds displayed homogeneous interconnected macroporous structure and could withstand a compression stress of 2.67 ± 0.37 MPa, which was higher than that of the control group. Rabbit chondrocytes were seeded on the composite porous scaffolds and cultured for 21 days. Cell/scaffold constructs were examined using SEM, histological procedures, and biochemical assays for cell proliferation and the production of glycosaminoglycans (GAGs). The results indicated that HLC/nHA porous scaffolds were capable of encouraging cell adhesion, homogeneous distribution and abundant GAG synthesis, and maintaining natural chondrocyte morphology compared to RAB scaffolds. In conclusion, the presented data warrants the further exploration of HLC/nHA scaffolds as a potential biomimetic platform for chondrocytes in cartilage tissue engineering.  相似文献   

18.
Composite porous scaffolds of hydroxyapatite (HA)/poly-l-lactide (PLLA) were fabricated by a two-step immersing replication method. Structure and mechanical properties of both the single HA scaffold and the composite HA/PLLA scaffold were determined. The bioactivity of the scaffolds was evaluated by soaking in a simulated body fluid (SBF), and the formation of the apatite layer was determined by X-ray diffraction (XRD), Scanning Electron Microscope (SEM) and Energy-Dispersive Spectrometer (EDS). The results showed that without changing the highly interconnected porous structure, the HA/PLLA composite scaffold was mechanically enhanced to a great deal of extent compared with single HA scaffold. On the other hand, it is also suggested that the HA/PLLA scaffold was bioactive as it induced the formation of apatite on the surface of the composite scaffolds after soaking in SBF for 7 days.  相似文献   

19.
As a natural protein, wool keratin was used to improve the cell affinity of poly(l-lactic acid) (PLLA). Small keratin particles were prepared from keratin solution by the spray-drying process. Keratin particles were blended with PLLA/1,4-dioxane solution and paraffin micro-spheres which were used as progens. After the mixture was molded and dried, the paraffin micro-spheres were removed by cyclohexane. PLLA/keratin scaffolds with controlled pore size and well interconnectivity were fabricated. Keratin releasing rate was detected by Fourier transform infrared (FTIR) after the scaffold was immersed into PBS up to 4 weeks. The surface chemical structure was examined by X-ray photoelectron spectroscope (XPS). The results suggested that the keratin could be held into the scaffold which was expected to improve the interactions between osteoblasts and the polymeric scaffolds.  相似文献   

20.
A composite scaffold for cartilage tissue engineering was fabricated by filling a porous poly (l-lactide) (PLLA) scaffold with fibrin gel. The porous PLLA scaffold prepared by a method of thermally induced phase separation has an average pore diameter of 200 μm and a porosity of 93%. Incorporation of fibrin gel into the scaffold was achieved by dropping a fibrinogen and thrombin mixture solution onto the scaffold. For a couple of minutes the fibrin gel was in situ formed within the scaffold. The filling efficiency was decreased along with the increase of the fibrinogen concentration. After fibrin gel filling, the compressive modulus and the yield stress increased from 5.94 MPa and 0.37 MPa (control PLLA scaffold in a hydrated state) to 7.21 MPa and 0.53 MPa, respectively. While the fibrin gel lost its weight in phosphate buffered saline up to ~50% within 3 days, 85% and 70% of the fibrin gel weight in the composite scaffold was remained within 3 and 35 days, respectively. A consistent significant higher level of rabbit auricular chondrocyte viability, cell number and glycosaminoglycan was measured in the composite scaffold than that in the control PLLA scaffold. Rabbit auricular chondrocytes with round morphology were also observed in the composite scaffold by confocal microscopy and scanning electron microscopy. Altogether with the features of better strength and cytocompatibility, this type of composite scaffold may have better performance as a matrix for cartilage tissue engineering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号