首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
In order to consider the effect of battery temperature on the total fuel consumption when a Pontryagin's Minimum Principle (PMP)-based power management strategy is applied to a fuel cell hybrid vehicle (FCHV), this paper designates the battery temperature as a second-state variable other than the battery state of charge (SOC) and defines a new costate for the battery temperature in the control problem. The PMP-based power management strategy is implemented in a computer simulation and the relationship among the final values of the two state variables and the total fuel consumption is illustrated based on the simulation results. This relationship is defined as an optimal surface in this research. Using the optimal surface, it can be concluded that considering the battery temperature effect in the PMP-based power management strategy improves the fuel economy of the FCHV. Potential fuel economy gains attributed to consideration of the battery temperature effect are also determined based on the optimal surfaces.  相似文献   

2.
This research develops an efficient and robust polymer electrolyte membrane (PEM) fuel cell/battery hybrid operating system. The entire system possesses its own rapid dynamic response benefited from hybrid connection and power split characteristics due to DC/DC buck-boost converter. An indispensable energy management system (EMS) plays a significant role in achieving optimal fuel economy and in a promising running stability. EMS as an indispensable part plays a significant role in achieving optimal fuel economy and promising operation stability. This study aims to develop an adaptive supervisory EMS that comprises computer-aided engineering tools to monitor, control, and optimize the performance of the hybrid power system. A stationary fuel cell/battery hybrid operating system is optimized using adaptive-Pontryagin's minimum principle (A-PMP). The proposed algorithm depends on the adaptation of the control parameter (i.e., fuel cell output power) from the state of charge (SOC) and load power feedback. The integrated model simulated in a Matlab/Simulink environment includes the fuel cell, battery, DC/DC converter, and power requirements models by analyzing the three different load profiles. Real-time experiments are performed to verify the effectiveness of EMS after analyzing the simulated operating principle and control scheme.  相似文献   

3.
The concept of passive hybrid, i.e. the direct electrical coupling between a fuel cell system and a battery without using a power converter, is presented as a feasible solution for powertrain applications. As there are no DC/DC converters, the passive hybrid is a cheap and simple solution and the power losses in the electronic hardware are eliminated. In such a powertrain topology where the two devices always have the same voltage, the active power sharing between the two energy sources can not be done in the conventional way. As an alternative, control of the fuel cell power by adjusting its operating pressure is elaborated. Only pure H2/O2 fuel cell systems are considered in this approach. Simulation and hardware in the loop (HIL) results for the powertrain show that this hybrid power source is able to satisfy the power demand of an electric vehicle while sustaining the battery state of charge.  相似文献   

4.
Fuel cell hybrid vehicles (FCHVs) have become a major topic of interest in the automotive industry owing to recent energy supply and environmental problems. Consequently, fuel economy evaluation methods of FCHVs have a popular research topic. The initial state of charge (SOC) and the final SOC of the battery have to be identical in an evaluation of the fuel economy of an FCHV. In an actual driving situation or during a forward simulation, however, the final SOC depends on the power management strategy, which is usually different from the initial SOC. To consider the effect of the difference between the initial and final SOC on fuel economy evaluation, the concept of equivalent fuel consumption, based on the optimal control, is introduced in this paper. A rule-based power management strategy is applied to an FCHV, and its fuel economy is evaluated in terms of the equivalent fuel consumption and compared to the optimal control result.  相似文献   

5.
Fuel cell-battery hybrid systems for the powertrain, which have the advantage of emission-free power generation and adapt to material transport and emission reduction, are investigated. Based on the characteristics of the fuel cell system and the characteristics of the electric forklift truck powertrain system, this work defines the design principle of the control strategy to improve overall performance and economy. A simulation platform for fuel cell and electric vehicles has been established. The optimal performance of the fuel cell stack and the battery capacity were defined for the specific application. An energy control strategy was defined for different operating cycles and operating conditions. Model validation involved comparing simulation results with experimental data obtained during VDI60 test protocol. The main parameters that influence the forklift performance were defined and evaluated, such as energy loss, fuel cell operating conditions and different battery charging cycles. The optimal size of the fuel cell stack of 11 kW and the battery of 10 Ah was determined for the specific load profile with the proposed control strategy. The results obtained in this work forms the basis for an in-depth study of the energy management of fuel cell battery drive trains for forklift trucks.  相似文献   

6.
Fuel Cell Hybrid Vehicles (FCHV) can reach near zero emission by removing the conventional internal combustion from the vehicle powertrain. Nevertheless, before seeing competitive and efficient FCHV on the market, at market prices, different technical, economic, and social challenges should be overcome. A typical hybrid fuel cell powertrain combines a fuel cell stack and a dedicated energy storage system along with their necessary power converters. Energy storage systems are used in order to enhance the well-to-wheel efficiency and thus reducing the hydrogen consumption. An efficient management of power flows on the vehicle, allows optimizing the recovery of energy braking. Moreover, working in the fuel cell maximum efficiency leads to reduced thermal losses and thus to the downsizing of the heat exchangers. This paper presents an enhanced control of the power flows on a FCHV in order to reduce the hydrogen consumption, by generating and storing the electrical energy only at the most suitable moments on a given driving cycle. While the off-line optimization-based on dynamic programming algorithm offers the necessary optimal comparison reference on a known demand, the proposed strategy which can be implemented on-line, is based on a fuzzy logic decision system. The fine tuning of the fuzzy system parameters (mainly the membership functions and the gains), is made using a genetic algorithm and the fuzzy supervisor shows performing results for different load profiles.  相似文献   

7.
This paper evaluates the option of using a new powertrain based on fuel cell (FC), battery and supercapacitor (SC) for the Urbos 3 tramway in Zaragoza, Spain. In the proposed powertrain configuration, a hydrogen Proton-Exchange-Membrane (PEM) FC acts as main energy source, and a Li-ion battery and a SC as energy support and storage systems. The battery supports the FC during the starting and accelerations, and furthermore, it absorbs the power generated during the regenerative braking. Otherwise, the SC, which presents the fastest dynamic response, acts mainly during power peaks, which are beyond the operating range of the FC and battery. The FC, battery and SC use a DC/DC converter to connect each energy source to the DC bus and to control the energy exchange. This configuration would allow the tramway to operate in an autonomous way without grid connection. The components of the hybrid tramway, selected from commercially available devices have been modeled in MATLAB-Simulink. The energy management system used for controlling the components of the new hybrid system allows optimizing the fuel consumption (hydrogen) by applying an equivalent consumption minimization strategy. This control system is evaluated by simulations for the real driving cycle of the tramway. The results show that the proposed control system is valid for its application to this hybrid system.  相似文献   

8.
In this paper, a hierarchical energy management strategy (EMS) based on low-pass filter and equivalent consumption minimization strategy (ECMS) is proposed in order to lift energy sources lifespan, power performance and fuel economy for hybrid electrical vehicles equipped with fuel cell, battery and supercapacitor. As for the considered powertrain configuration, fuel cell serves as main energy source, and battery and supercapacitor are regarded as energy support and storage system. Supercapacitor with high power density and dynamic response acts during great power fluctuations, which relives stress on fuel cell and battery. Meanwhile, battery is used to lift the economy of hydrogen fuel. In higher layer strategy of the proposed EMS, supercapacitor is employed to supply peak power and recycle braking energy by using the adaptive low-pass filter method. Meantime, an ECMS is designed to allocate power of fuel cell and battery such that fuel cell can work in a high efficient range to minimize hydrogen consumption in lower layer. The proposed EMS for hybrid electrical vehicles is modeled and verified by advisor-simulink and experiment bench. Simulation and experiment results are given to confirm effectiveness of the proposed EMS of this paper.  相似文献   

9.
The hybrid powerplant combining a fuel cell and a battery has become one of the most promising alternative power systems for electric unmanned aerial vehicles (UAVs). To enhance the fuel efficiency and battery service life, highly effective and robust online energy management strategies are needed in real applications.In this work, an energy management system is designed to control the hybrid fuel cell and battery power system for electric UAVs. To reduce the weight, only one programmable direct-current to direct-current (dcdc) converter is used as the critical power split component to implement the power management strategy. The output voltage and current of the dcdc is controlled by an independent energy management controller. An executable process of online fuzzy energy management strategy is proposed and established. According to the demand power and battery state of charge, the online fuzzy energy management strategy produces the current command for the dcdc to directly control the output current of the fuel cell and to indirectly control the charge/discharge current of the battery based on the power balance principle.Another two online strategies, the passive control strategy and the state machine strategy, are also employed to compare with the proposed online fuzzy strategy in terms of the battery management and fuel efficiency. To evaluate and compare the feasibility of the online energy management strategies in application, experiments with three types of missions are carried out using the hybrid power system test-bench, which consists of a commercial fuel cell EOS600, a Lipo battery, a programmable dcdc converter, an energy management controller, and an electric load. The experimental investigation shows that the proposed online fuzzy strategy prefers to use the most power from the battery and consumes the least amount of hydrogen fuel compared with the other two online energy management strategies.  相似文献   

10.
Renewable energy sources (RESs) have been limited to connect to main grid because of their inherent disadvantages such as the fluctuation and intermittence of the output power, the inconsistency with load curve and the impact on the relay protection. Hydrogen production unit (HPU) can address the above issues because it can achieve large-capacity and long-term power absorption, and requires not much of the RESs. In this paper, an adaptive coordination control strategy is proposed in the islanded DC microgrid containing PV generators, storage battery, fuel cell and HPU. As for HPU, the energy conversion efficiency from electric energy to hydrogen energy of HPU is derived and it reveals that there exists a peak value in the efficiency curve. Then an efficiency adaptive control is proposed to adjust the power absorption by regulating the efficiency point based on the dc bus voltage. As for storage battery, the state of charge (SoC) and the instantaneous charging and discharging power of the battery are considered, which can avoid the battery being overused or damaged. As for PV generator, the designed PV controller can adaptively regulate its output power from the maximum power point to the reference power point. As for fuel cell, it is designed that the fuel cell starts to supply power in low-SoC condition with constant power control strategy. Finally, the stability of the coordination control strategy is analyzed based on Nyquist stability criterion and the control effectiveness is verified with simulation and experimental results.  相似文献   

11.
This research presents an optimum design scheme and a hierarchical energy management strategy for an island PV/hydrogen/battery hybrid DC microgrid (MG). In order to efficiently utilize this DC MG, the optimum structure and sizing scheme are designed by HOMER pro (Hybrid Optimization of Multiple Energy Resources) software. The designed structure of hydrogen MG includes a PV generation, a battery as well as a hydrogen subsystem which composes a fuel cell (FC) system, an electrolyzer and hydrogen tank. To improve the robustness and economy of this DC MG, this study schedules a hierarchical energy management method, including the local control layer and the system control layer. In the local control layer, the subsystems in this DC MG are controlled based on their inherent operating characteristics. And the equivalent consumption minimization strategy (ECMS) is applied in the system control layer, the power flow between the battery and FC is allocated to minimum the fuel consumption. An island DC MG hardware-in-loop (HIL) Simulink platform is established by RT-LAB real-time simulator, and the simulation results are presented to validate the proposed energy management strategy.  相似文献   

12.
The fuel cell/battery durability and hybrid system stability are major considerations for the power management of fuel cell hybrid electric bus (FCHEB) operating on complicated driving conditions. In this paper, a real time nonlinear adaptive control (NAC) with stability analyze is formulated for power management of FCHEB. Firstly, the mathematical model of hybrid power system is analyzed, which is established for control-oriented design. Furthermore, the NAC-based strategy with quadratic Lyapunov function is set up to guarantee the stability of closed-loop power system, and the power split between fuel cell and battery is controlled with the durability consideration. Finally, two real-time power management strategies, state machine control (SMC) and fuzzy logic control (FLC), are implemented to evaluate the performance of NAC-based strategy, and the simulation results suggest that the guaranteed stability of NAC-based strategy can efficiently prolong fuel cell/battery lifespan and provide better fuel consumption economy for FCHEB.  相似文献   

13.
Adapting to urban transportation and emission reduction in China, fuel cell extended-range commercial vehicles are advocated and studied, which have the advantages of no pollution and long continued driving mileage. According to the features of fuel cell extender and characteristics of the powertrain system of the electric commercial vehicle, the design principle of the extender control strategy is determined in this paper, in order to improve the power and economic performance. A simulation platform for fuel cell plus electric vehicles was established. By comparing and analyzing the characteristics of on-off control strategy, power following control strategy and fuzzy logic control strategy, an on-off power following control strategy is put forward and built which is used for extender controller, and a fuzzy algorithm of following control strategy is studied. By Simulating and analyzing on the platform, the results show that the power following fuzzy algorithm can improve the power performance with the 8.9s accelerating time (0–50 km/h) and better total mileage continued 286.7 km for the powertrain system of fuel cell extended-range commercial vehicles. The research in this paper provides a basis for the in-depth study of the energy management of electric vehicles.  相似文献   

14.
An innovative control strategy is proposed of hybrid distributed generation (HDG) systems, including solid oxide fuel cell (SOFC) as the main energy source and battery energy storage as the auxiliary power source. The overall configuration of the HDG system is given, and dynamic models for the SOFC power plant, battery bank and its power electronic interfacing are briefly described, and controller design methodologies for the power conditioning units and fuel cell to control the power flow from the hybrid power plant to the utility grid are presented. To distribute the power between power sources, the fuzzy switching controller has been developed. Then, a Lyapunov based-neuro fuzzy algorithm is presented for designing the controllers of fuel cell power plant, DC/DC and DC/AC converters; to regulate the input fuel flow and meet a desirable output power demand. Simulation results are given to show the overall system performance including load-following and power management of the system.  相似文献   

15.
Transient behavior is a key property in the vehicular application of proton exchange membrane (PEM) fuel cells. A better control technology is constructed to increase the transient performance of PEM fuel cells. A steady-state isothermal analytical fuel cell model is constructed to analyze mass transfer and water transport in the membrane. To prevent the starvation of air in the PEM fuel cell, time delay control is used to regulate the optimum stoichiometric amount of oxygen, although dynamic fluctuations exist in the PEM fuel cell power. A bidirectional DC/DC converter connects the battery to the DC link to manage the power distribution between the fuel cell and the battery. Dynamic evolution control (DEC) allows for adequate pulse-width modulation (PWM) control of the bidirectional DC/DC converter with fast response. Matlab/Simulink/Simpower simulation is performed to validate the proposed methodology, increase the transient performance of the PEM fuel cell system and satisfy the requirement of energy management.  相似文献   

16.
This paper intends to propose a novel control algorithm for utilizing a polymer electrolyte membrane fuel cell (PEMFC) as a main power source and batteries as a complementary source, for hybrid power sources for distributed generation system, particularly for future electric vehicle applications. The control, which takes into account the slow dynamics of a fuel cell (FC) in order to avoid fuel (hydrogen and air) starvation problems, is obviously simpler than state machines used for hybrid source control. The control strategy lies in using an FC for supplying energy to battery and load at the dc bus. The structure is an FC current, battery current, and battery state-of-charge (SOC) cascade control. To validate the proposed principle, a hardware system is realized by analogical circuits for the FC current loop and numerical calculation (dSPACE) for the battery current and SOC loops. Experimental results with small-scale devices (a 500 W PEM FC and 33 Ah, 48 V lead-acid battery bank) illustrate the excellent control scheme during motor drive cycles.  相似文献   

17.
With the fast development of DC Microgrid (MG) technology, its operating economy and reliability are getting more and more concern. The traditional distributed control method is aimed at power balance and system stability, and is difficult to meet the requirement of energy management system for multi-source hybrid DC MG. This paper provides a two-level energy management strategy for PV-fuel cell-battery-based DC MG, which is divided into device control level and system control level. At the device control level, the distributed control methods based on MPPT-droop dual-mode control and droop control are proposed to enhance system reliability; at the system control level, the equivalent consumption minimization strategy (ECMS) is used to distribute system net power between battery pack and fuel cell system. A lab-scale DC microgrid platform is developed to verify the proposed energy management strategy in this paper. Moreover, the analysis and compare of the results show that the proposed two-level energy management strategy can achieve lower equivalent hydrogen consumption than classical PI control and state machine control method.  相似文献   

18.
This paper presents the experimental results of an actively controlled fuel cell/battery hybrid power source topology that can be widely used in many applications, such as portable electronic devices, communication equipment, spacecraft power systems, and electric vehicles, in which the power demand is impulsive rather than constant. A step-down DC/DC power converter is incorporated to actively control the power flow between the fuel cell and the battery to achieve both high power and high energy densities. The results show that the hybrid power source can achieve much greater specific power and power density than the fuel cell alone. This paper first demonstrates that an actively controlled hybrid with a 35 W hydrogen-fueled polymer electrolyte membrane fuel cell and a lithium-ion battery pack of six cells yielded a peak power of 100 W, about three times as high as the fuel cell alone can supply, while causing a very limited (10%) weight increase to the whole system. After that, another hybrid source using a different battery array (eight cells) was investigated to further validate the control strategy and to show the flexibility and generality of the hybrid source design. The experimental data show that the hybrid source using an eight-cell battery supplied a peak power of 135 W, about four times that of the fuel cell alone. Finally, three power sources including the fuel cell alone and the two hybrids studied were compared in terms of specific power, power density, volume, weight, etc. The design presented here can be scaled to larger or smaller power capacities for a variety of applications.  相似文献   

19.
With ever growing concerns on energy crises and environmental issues, Proton Exchange Membrane Fuel Cell is favored in automotive applications because it is clean, efficient and low noise. A fuel cell hybrid powertrain is composed of a fuel cell system as the primary power source, a battery as the secondary power source and an electric motor. In order to improve the reliability, a distributed control system that can be preserved even under faulty cases is necessary. This paper presents an active fault tolerance control system (AFTCS) for a fuel cell/battery hybrid powertrain applied to a city bus. The AFTCS consists of a system for fault detection and diagnose and a reconfigurable controller. Algorithms to detect and isolated three kinds of important faults are introduced. The real-time applicable reconfigurable controller is exploited to recover the pre-fault system performance as much as possible. Experimental results show the effectiveness of the proposed system.  相似文献   

20.
A testing and validation platform for hybrid fuel cell (FC)–lithium‐ion battery (LIB) powertrain systems is investigated. The hybrid FC electric vehicle emulator enables testing of hybrid system components and complete hybrid power modules up to 25 kW for application in electric light‐duty vehicles, light electric vehicles and so forth. A hybrid system comprising a 10‐kWel low‐temperature polymer electrolyte membrane FC stack and an 11.5‐kWh LIB pack is installed. The system supplies power to a 20‐kW permanent magnet synchronous motor and a 25‐kW alternating current asynchronous, electrically programmable dynamometer is used to simulate the vehicle load during testing at dynamic drive cycle. The steady‐state performance tests of the direct current (DC) motor, DC/DC converter, low‐temperature polymer electrolyte membrane FC stack and LIB are performed as well as dynamic tests of the complete hybrid system. The Economic Commission for Europe driving cycle is selected as a reference cycle to validate the investigated hybrid FC–LIB powertrain. An efficiency of 83% and 95% is measured for electric motor and DC/DC converter, respectively. An average stack efficiency of 50% is achieved. An average hydrogen consumption of 3.9 g * km?1 is reached during the Economic Commission for Europe driving cycle test. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号