首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Temperature effects on flocculation, using different coagulants.   总被引:2,自引:0,他引:2  
Temperature is known to affect flocculation and filter performance. Jar tests have been conducted in the laboratory, using a photometric dispersion analyser (PDA) to assess the effects of temperature on floc formation, breakage and reformation. Alum, ferric sulphate and three polyaluminium chloride (PACI) coagulants have been investigated for temperatures ranging between 6 and 29 degrees C for a suspension of kaolin clay in London tap water. Results confirm that floc formation is slower at lower temperatures for all coagulants. A commercial PACl product, PAX XL 19, produces the largest flocs for all temperatures; and alum the smallest. Increasing the shear rate results in floc breakage in all cases and the flocs never reform to their original size. This effect is most notable for temperatures around 15 degrees C. Breakage, in terms of floc size reduction, is greater for higher temperatures, suggesting a weaker floc. Recovery after increased shear is greater at lower temperatures implying that floc break-up is more reversible for lower temperatures.  相似文献   

2.
The effect of shear on the formation and break-up of flocs generated using cationic, anionic and non-ionic polymers, and dual combinations of these, has been investigated using conventional jar test procedure and by continuous optical monitoring. The breakage of flocs was followed at a high stirring speed, corresponding to average shear rate (G) of approximately 520 s(-1). Most of the breakage occurred within a few seconds of increasing the shear rate. After each breakage, the stirring rate was reduced to the original value of 50 rpm (G approximately 23 s(-1)) to allow the flocs to regrow. For cationic-anionic polymers case, the regrowth of flocs was fully reversible and the breakage factors were smallest indicating highest floc strength. In contrast, flocs formed using non-ionic polymer together with anionic or cationic did not produce as strong flocs. It is found that the sequence of polymer addition is not very significant for floc formation and reformation when the cationic-anionic dual system is used.  相似文献   

3.
Four experiments of coagulation and flocculation were conducted to investigate the characteristics of colloidal silica removal in a high-tech industrial wastewater treatment plant for reclamation and reuse of the effluent. Experimental results illustrated that poly-aluminium chloride (PACl) showed higher performances on colloidal silica removal than alum. Interestingly, the two coagulants demonstrated the same capacity on silica removal. The specific silica removal capacity was approximately 0.135 mg SiO2/mg Al2O3 when the dosage of coagulants was in the range 30-150 mg/L Al2O3. In addition, the silica was reduced significantly at the condition of pH above 8. Experimental data implied that precipitation of aluminium flocs was the major mechanism for colloid silica removal in PACl and alum coagulation, besides, charge adsorption was also important for improving removal efficiency. Moreover, the addition of polyacrylic acid (PAA) as a flocculant could slightly advance silica removal in the PACl coagulation. The combined PACl/PAA/flocs coagulation was effective for the removal of colloidal silica, soluble COD, and turbidity and also suitable as a pretreatment unit in wastewater reclamation and reuse processes.  相似文献   

4.
Micro-flocs of NOM coagulated by polyaluminium chloride (PACl), alum and polysilicate-iron (PSI) were characterized by flocs size, HPSEC-based molecular weight and the captured content of coagulants-based aluminium and iron. Changes in floc composition with respect to the mass ratios of captured NOM to Al and Fe were examined. Lowering water pH to optimum levels was found to be capable of removing small NOM constituents that are generally difficult to be precipitated at neutral pH levels. For PACl and PSI, the distribution of micro flocs (0.1-5.0 microm) reached steady stage after rapid mixing for 30 seconds, with NOM being found existent within the non-coagulated fraction (d<0.1 microm) and the coagulated fraction with floc sizes above 5.0 microm (d >5.0 microm). For alum, however, the existence of NOM inside intermediate floc fractions of d = 0.1-1.0 microm, 1.0-3.0microm and 3.0-5.0 microm was confirmed.  相似文献   

5.
The breakage of flocs is dependent upon the strength of the bonds holding the aggregate together. The present work describes the breakage and re-growth behaviour of three different types of floc, these were: 1) coagulant precipitate flocs, 2) turbidity flocs and 3) organic matter flocs. Floc aggregates were exposed to increased levels of shear on a conventional jar tester and the sizes of the flocs were observed dynamically using a laser diffraction instrument. The organic flocs showed most resistance to breakage across the whole range of shears under investigation. The dynamic procedure provided detailed information on particle size distributions (PSD). Large and small scale degradation events could be identified from analysis of the PSD data. All of the flocs under investigation showed little re-growth potential after breakage. The precipitate and organic flocs showed slightly better re-aggregation of the small floc sizes.  相似文献   

6.
The infectivity of viruses (Qbeta, MS2, T4, and P1) after dosing virus-contaminated water with 4 types of aluminium coagulant was investigated. The concentrations of infectious viruses were determined after dissolving aluminium hydroxide flocs in alkaline solution. The concentration of infectious viruses did not recover to the initial value after a short floc-dissolution time (5 s). Although the infectious virus concentration increased as the floc-dissolution time was extended to 5 h, it did not recover fully. Irreversible adhesion between virus particles and aluminium coagulant is responsible for the insufficient recovery. We interpret this phenomenon as a virucidal activity of the aluminium coagulant. All tested aluminium coagulants (PACl, alum, and reagent grade aluminium chloride and aluminium sulfate) inactivated all types of viruses tested. PACl had the highest virucidal activity. The virucidal activity of aluminium coagulants was lower in river water, presumably owing to the presence of natural organic matter.  相似文献   

7.
This paper established a method for the evaluation of floc strength by morphological analysis and PDA online monitoring. Theoretically, the binding force of a floc can be expressed as B=k(1)d(2Df/3), where k(1) is a coefficient, d is floc size and D(f) is the fractal dimension of the floc. In order to calculate the binding force under a given flocculation condition, a jar test was conducted and d and D(f) were measured by image analysis. A shear force was exerted on the grown flocs by introducing the flocculated suspension through a transparent tube where the velocity gradient value of the flow could be accurately controlled. As the tube was connected with a particle dispersion analyzer (PDA), the condition of floc breakage was online monitored and the critical condition was identified by analyzing the PDA outputs (FI curves). The binding force coefficient k(1) could thus be determined, and the binding force B which represented the floc strength was evaluated. The validity of this method was proved by a series of experiments using aluminium sulphate as coagulant for the flocculation of humic substances.  相似文献   

8.
The performance of dual coagulants in clay suspension was investigated in this study using aluminium chloride and the cationic polymer as coagulants. According to the study results, the performance of dual coagulants was affected by dosage of aluminium chloride. Beneficial effect by use of dual coagulants were only noted when aluminium chloride was underdosed. The addition sequence of coagulants was important for the performance of dual coagulants. Simultaneous addition resulted in the best performance, while addition of the polymer first resulted in the worst performance. Addition of aluminium chloride first resulted in the similar performance as single use of aluminium chloride. Although sulphate ion improved the floc characteristics, similar results were obtained. The effectiveness of rapid mixing depended on dosage of aluminium chloride. Extending rapid mixing (6 min) was beneficial when aluminium chloride was underdosed so that coagulation occurred at the combination region. However, such benefit was not observed at the optimum condition, which belonged to the sweep coagulation region. Different floc formation caused the difference. Extended rapid mixing would be beneficial when collision between clay particles and Al(III) was necessary. However, such benefit would disappear at the optimum condition because rapid mixing could break up the floc already formed.  相似文献   

9.
The complex nature of particulate matter in natural water resources and in waste waters is characterized by the heterogeneous distribution of particle size, shape, density, and shear strength. Among these parameters, floc strength is most important in the last stages of flocculation. Experimental data on floc strength based on different methods are assessed and correlated with shear gradients in different aquatic environments. The analysis of turbulent motion reveals that the energy which affects particle agglomerates is only a small portion of the totally dissipated energy. Among the different flow fields in turbulent motion, converging/diverging flow cause strain forces which prove to be critical with respect to floc rupture. Model calculations of the surface forces on ellipsoidal particles in pure shear and strain flow fields and corresponding experiments confirm the importance of converging flow. A comparison of modeled and measured rupture forces allows to establish relationships between floc size, strain and shear rates and resulting surface forces leading to probable floc break-up. Flocs of appreciable size (200 - 2000 µm) prepared for settling are likely to be ruptured under moderate velocity gradients occurring in flocculation tanks, whereas smaller agglomerates (< 200 µm) may withstand strain forces much higher than found under practical conditions. An example of model application shows the particle stress in the entrance to porous media filters where typically high strain gradients may easily lead to a break-up of flocs larger than 200 µm.  相似文献   

10.
Activated sludge flocs consist of numerous constituents which, together with other factors, are responsible for floc structure and floc properties. These properties largely determine the sludge properties such as flocculation, settling and dewaterability. In this paper we briefly review the present knowledge about the role of bacteria in relation to floc and sludge properties, and we present a new approach to investigate the identity and function of the bacteria in the activated sludge flocs. The approach includes identification of the important bacteria and a characterization of their physiological and functional properties. It is carried out by use of culture-independent molecular biological methods linked with other methods to study the physiology and function, maintaining a single cell resolution. Using this approach it was found that floc-forming properties differed among the various bacterial groups, e.g. that different microcolony-forming bacteria had very different sensitivities to shear and that some of them deflocculated under anaerobic conditions. In our opinion, the approach to combine identity with functional analysis of the dominant bacteria in activated sludge by in situ methods is a very promising way to investigate correlations between presence of specific bacteria, and floc and sludge properties that are of interest.  相似文献   

11.
Floc formation and settleability is critical for effective solid-liquid separation in many wastewater treatment processes. This study aimed to investigate the relationship between particle size distribution and nutrient conditions in different bioreactor configurations. Size distribution profiles of flocs that formed in continuous (B1), continuous with clarifier and return sludge (B2) and SBR (B3) reactors were investigated in parallel under identical nutrient conditions. An eight-fold dilution of the influent COD of a synthetic dairy processing wastewater resulted in a 'feast and famine' regime that triggered significant effects on the biomass and flocculation characteristics. Floc size analysis of reactor MLSS revealed a shift in floc sizes when reactors were fed with the minimum (famine) COD wastewater feed (0.61 g L(-1)). Increasing floc size distributions were detected for all reactors during the minimum COD feed although different size patterns were observed for different reactor configurations. These increases corresponded with variations in aggregation and EPS quantities. The SBR yielded comparatively larger flocs when operated under both COD feeds as indicated by d(0.9) values (90% of particles ≤ d in size). Overall the results indicated that floc formation and floc size are mediated by nutrient concentrations and represents an important step towards improved solid-liquid separation.  相似文献   

12.
13.
Pre-coagulation enhanced by KMnO(4) before ultrafiltration (KCUF) was compared with normal pre-coagulation by alum (CUF) in the ultrafiltration of water from the Songhua River, China. The trans-membrane pressure (TMP) with KCUF was much lower than that when alum alone was used. With KCUF a slower increment of TMP occurred, even under conditions of high river water turbidity. The results also showed that the removal of COD, UV(254) and TOC was appreciably higher after adding 0.5mg/L KMnO(4) compared with CUF. Although assimilable organic carbon (AOC) was increased by permanganate treatment, the AOC of the permeate from KCUF was nearly the same as that from CUF, showing that the cake layer on the surface of KCUF membrane could adsorb small molecules more effectively than that of CUF. This result was confirmed by the apparent molecular weight (MW) distribution measured by size exclusion chromatography (SEC). It was shown that flocs formed by KMnO(4) and alum were larger than those formed only by alum, causing higher removal of flocs and higher permeation flux. Lower NOM was found in the permeate from the KCUF systems because oxidation and adsorption of organic matter on the flocs occurred. The membrane was partly clogged by organic matter or other materials including some small flocs.  相似文献   

14.
The combined use of nanoparticle and polyelectrolyte as retention aids in pulp and paper industry tend to give better flocculation (retention) and drainage (dewatering) than conventional polyelectrolyte flocculation. The combined use of alumina nanoparticle and polyelectrolyte in conditioning waste activated sludge was investigated in the current study. Alumina with three different sizes (139.5, 241.7, and 326.4 nm) was utilized in combination with a cationic polyelectrolyte (T3052) of molecular weight of 1.1 x 10(7) and charge density of 2.1 meq/g. It was found from capillary suction time (CST) and specific resistance to filtration (SRF) measurement that sludge conditioned with alumina/polyelectrolyte showed a better dewaterability than polyelectrolyte alone. In addition, it was found that the better dewaterability was obtained as alumina became smaller. Floc size and fractal dimension of flocs were examined as well. The mechanism of enhanced dewaterability was proposed that alumina nanoparticles became adsorbed onto sludge and positive patches were formed. The electrostatic repulsion made the polyelectrolyte more stretched, and resulted in more effective flocculation and bridging as polyelectrolyte was added. Dosing sequence also affected the conditioning effectiveness. However, the combined use of silica nanoparticles and a cationic polelectrolyte, KP-201C, or alumina nanoparticles and an anionic polyelectrolyte, AP410, did not result in improved dewaterability of waste activated sludge. Possible explanation was discussed. Preliminary results show that some in-depth work is needed regarding the introduction of nanoparticles in sludge conditioning.  相似文献   

15.
Removal of humic substances by coagulation involves nano- and microparticle transport processes. The objective of this paper has been to describe the effects of polymer characteristics on the initial coagulation of nano-sized humic substances and on the aggregates' ability to form larger flocs. The study offers a direct comparison of four different low molecular weight polycations, with charge densities ranging from 4.0 to 7.0 meq/g, as well as of a low and medium molecular weight cationic polyacrylamide with practically equal charge densities. The extent of coagulation of humic substances, determined as the percentage removal of humic substances after filtration through 0.1 microm, could, regardless of the polymer type, be explained by the amount of cationic charge equivalents added per mg TOC of humic substances. The optimal polymer dosage with respect to the extent of flocculation, determined as the percentage removal after filtration through 11 microm could not be explained by this, but the maximum extent of flocculation obtained with each polymer type increased with increasing polyelectrolyte charge density. However, the weak polycation chitosan showed a significantly higher maximum extent of flocculation than would be predicted from its charge density. Polyelectrolyte molecular weight did not show any significant effect on the coagulation of humic substances, nor did it increase the extent of floc separability at 11 microm.  相似文献   

16.
17.
This study focused on the effects of starvation on physical characteristics of flocs in SBR for treating saline wastewater. Feeding was stopped for 5 and 15 days. A time response of the floc to these starvation periods was monitored as well as the removal efficiencies of pollutants. Correlation between the physical characteristics of flocs and settling of sludge was conducted. As the starvation periods were increased, there was a shift in the floc size distribution from a high proportion of large flocs to the development of small size flocs. The fractal dimension of flocs also decreased, as starvation periods were increased. From the results, the effect of starvation on SBR treating saline wastewater can be ordered as follows: COD Mn removal < floc size and fractal dimension < T-N removal < T-P removal.  相似文献   

18.
This paper focuses on the distribution of alumino-humic flocs found in a stirred suspension. Distributions were scaled using the transformation u = d/dL in which d is floc diameter and dL its arithmetic mean value and fitted by a gamma distribution. Flocs were treated as monofractal with solids mass concentration specified by C = A'rhos (d/do)D-3 in which A' is a packing coefficient, rhos the density of the floc solids, D the fractal dimension and do a reference size. It was shown that the overall solids concentration (M) complies with the dependence M proportional to NA'dDL-S(D) in which N is the number of flocs per unit volume and S(D) a distribution moment. Initial estimates of A' and D were obtained from analysis of floc sedimentation behaviour. From knowledge of the base parameters, the calculated value of M did not match the measured M and varied with shear. This was attributed to a kinematic influence on C over and beyond changes associated with the response of dL to shear. Issues of self-similarity were examined and it was concluded that distributions did not display strict self-similarity. Data are provided on the size distribution found in the flocculators of a treatment works at full scale.  相似文献   

19.
粗粒土颗粒破碎大型直剪试验研究   总被引:1,自引:0,他引:1  
颗粒破碎是粗粒土的基本属性。随着高土石坝的陆续兴建,高应力下粗粒土的颗粒破碎特征成为人们研究的一个重要方面。通过对不同粒径粗粒土试样的大型直剪试验,研究了高法向应力下粗粒土的颗粒破碎规律,并对接触面剪应力-剪位移关系进行了分析。结果表明:随着法向应力增加,颗粒破碎率增加;相同法向应力下,粒径越大,破碎率越大;级配越良好,破碎率越小;颗粒破碎主要形成次一级粒径。  相似文献   

20.
Microcystis aeruginosa was cultured in biologically treated municipal effluent to simulate blue-green algal bloom conditions in a treatment lagoon. The effect of algae in the early, mid and late phases of growth on membrane fouling, chemical coagulation (alum or aluminium chlorohydrate (ACH)) and hydraulic cleaning on the microfiltration of this effluent was investigated. The effect of M. aeruginosa in the early phase was negligible and gave a similar flux profile and permeate volume to that of effluent alone. The increase in M. aeruginosa concentration for the mid and late phases caused a significant reduction in permeate volume compared with the early phase. Full flux recovery was achieved with an alum dose of 1 mg Al3+ L(-1) (early phase) and 10 mg Al3+ L(-1) (mid phase), demonstrating that membrane fouling was hydraulically reversible. For the late phase, the highest flux recovery was 89%, which was achieved with an alum dose of 5 mg Al3+ L(-1). Higher alum dosages resulted in a reduction in flux recovery. The use of 1.5 pm pre-filtration after alum treatment showed little improvement in water quality but led to a drastic reduction in flux recovery, which was attributed to diminishing the protective layer on the membrane surface, thus enabling internal fouling. The performance of ACH was comparable to alum at low dissolved organic carbon (DOC) and cell concentration, but was not as effective as alum at high DOC and cell concentration due to the formation of more compact ACH flocs, which resulted in a higher cake layer specific resistance, leading to the deterioration of performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号