首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 546 毫秒
1.
张发军 《现代矿业》2012,(2):78-80,107
对某赤铁采用"焙烧—1段磨矿—强磁选—2段磨矿—弱磁选"工艺,用无烟煤做还原剂,磁化焙烧温度为850℃,在矿样与还原剂的质量配比为50∶4条件下磁化焙烧45 min,1段磁场强度和磨矿细度分别为1 273.6 kA/m、-200目占58.78%,2段磁场强度和磨矿细度分别为80 kA/m、-350目占89.31%,最终得到的铁精矿品位为65.07%,产率为57.76%,回收率为70.30%。  相似文献   

2.
鉴于酒钢-1 mm镜铁矿粉矿采用常规选矿方法难以获得好的分选指标,进行常规磁化焙烧—弱磁选又需解决球团问题,以哈密烟煤为还原剂,对该粉矿开展了微波磁化焙烧—弱磁选研究,考察了煤粉用量、微波功率、焙烧温度、焙烧时间、焙烧产品磨矿细度和弱磁选磁场强度对所获铁精矿指标的影响。试验结果表明,在煤粉与矿石的质量比为5%、微波功率为1 k W、焙烧温度为550℃条件下将该粉矿微波磁化焙烧15 min,然后将焙烧矿磨细至-0.074 mm占85.65%,在92.16 k A/m磁场强度下进行1次磁选管选别,可获得铁精矿铁品位为55.10%、铁回收率为86.65%的较好指标,从而为该-1 mm镜铁矿粉矿中铁矿物的高效回收提供了一种新思路。  相似文献   

3.
某褐铁矿原矿铁品位39.28%,其中褐铁矿矿物含量占73.86%,具有一定的回收价值。以焦煤为还原剂,采用磁化焙烧-磁选的工艺回收其中的铁,试验主要考察了磁化焙烧温度、时间、还原剂加入量、磨矿细度、磁场强度对铁精矿选别指标的影响。确定最佳工艺条件为:磁化焙烧温度800℃,焦煤加入量4%,焙烧时间40 min,焙烧样磨矿至-0.037 mm 90%,磁场强度设置192 KA/m进行磁选,最终可获得磁选精矿铁品位59.76%、铁回收率73.31%的良好指标。  相似文献   

4.
某鲕状赤铁矿循环流化床焙烧-磁选试验研究   总被引:4,自引:2,他引:2  
采用实验室循环流化床装置,以CO与N2的混合气体和电加热方式模拟燃煤还原焙烧气氛,对铁品位为47.20%的鄂西某鲕状赤铁矿进行磁化焙烧-弱磁选试验,结果表明,在合适的焙烧温度、焙烧时间、焙烧气氛、气体流量、磁场强度及-325目占80%的最终磨矿细度下,经过循环流化床焙烧-阶段磨矿-一粗一精两段弱磁选,可获得精矿铁品位为56.60%,对焙烧矿铁回收率为77.79 %的较好选别指标。  相似文献   

5.
以焦煤为还原剂,采用还原焙烧-磁选的工艺方法对河南某黄金冶炼厂产出的冶炼渣进行铁的回收利用研究。该冶炼渣TFe品位35.91%,成分复杂,渣粒度极细,-0.025mm含量占73.71%,试验考察了还原焙烧温度、时间、还原剂加入量以及磨矿细度、磁场强度对选别指标的影响。确定最佳工艺条件为:焙烧温度1150℃,还原剂加入量13%,焙烧时间60min,焙烧样磨矿至-0.045mm占74.55%、60kA/m磁场强度下进行磁选,最终可获得铁精矿TFe品位93.21%、铁回收率82.72%的良好指标。  相似文献   

6.
以甘肃地区镜铁矿粉矿为原料, 采用磁化焙烧-弱磁选工艺, 研究了焙烧温度、焙烧时间、还原剂用量、磨矿细度、磁场强度等对磁选效果的影响。结果表明, 在煤粉用量2%、焙烧温度800 ℃、焙烧时间60 min条件下焙烧, 再在磨矿细度-0.074 mm粒级占85.36%、磁场强度92.16 kA/m条件下磁选, 可得到品位为54.95%、回收率为88.92%的弱磁选精矿。  相似文献   

7.
对某赤铁采用“焙烧-1段磨矿-强磁选-2段磨矿-弱磁选”工艺,用无烟煤做还原剂,磁化焙烧温度为850 ℃ ,在矿样与还原剂的质量配比为50:4条件下磁化焙烧45rain,1段磁场强度和磨矿细度分别为1273.6kA/m、-200日占58.78%,2段磁场强度和磨矿细度分别为80kA/m、-350目占89.31%,最终得到的铁精矿品位为65.07%,产率为57.76%,回收率为70.30%。  相似文献   

8.
采用磁化焙烧-磁选工艺回收硫酸渣中的铁,考察了焙烧温度、焙烧时间、煤粉用量以及磨矿细度等因素对铁精矿质量的影响,最终确定了焙烧温度750 ℃、焙烧时间50 min、还原剂煤粉用量8%为最佳焙烧条件。物相分析结果表明,磁化焙烧后硫酸渣中的铁主要以磁铁矿形式存在。焙烧矿磨矿细度为-0.045 mm粒级占87.31%时,采用一粗一扫闭路磁选工艺可获得铁品位65.58%、回收率96.99%的铁精矿,且精矿中的铁99%为磁性铁。  相似文献   

9.
新疆某菱铁矿磁化焙烧-磁选试验   总被引:1,自引:0,他引:1  
朱德庆  何威  潘建  薛子兴 《金属矿山》2012,41(5):79-81,103
以新疆某地菱铁矿为原料,详细研究了焙烧温度、焙烧时间、还原剂用量、菱铁矿粒度、焙烧产物磨矿细度和弱磁选磁场强度等因素对磁选效果的影响。结果表明:16~10 mm的菱铁矿在不加还原煤、焙烧温度为800 ℃、焙烧时间为15 min条件下的焙烧产物磨至-0.074 mm占90%,经1次弱磁选(151.20 kA/m),可获得铁品位为63.55%、回收率为95.76%的铁精矿。  相似文献   

10.
某氰化尾渣煤基还原焙烧-磁选试验   总被引:2,自引:1,他引:1  
在对某氰化尾渣进行化学分析和X射线衍射分析的基础上,进行了煤基还原焙烧-磁选试验研究,着重探讨了还原煤的种类和添加量、焙烧温度、焙烧时间对试验结果的影响。试验结果表明,用烟煤为还原剂,不仅用量比褐煤少,而且试验指标更好;在烟煤添加量为18%、焙烧温度为750 ℃、焙烧时间为60 min、焙烧产品磨矿细度为-0.074 mm占90%的情况下,经1粗1精弱磁选(磁场强度为149.6 kA/m),获得了铁品位为60%、回收率为70.80%的铁精矿。  相似文献   

11.
针对褐铁矿铁品位难提高的问题, 采用“微波还原焙烧-磁选”工艺, 将褐铁矿还原成磁铁矿, 弱磁选后获得高品位磁铁精矿。采用SEM和XRD检测方法, 研究了褐铁矿微波焙烧过程中的矿相演变规律, 同时采用单因素实验方法, 重点考察了保温时间、焙烧温度、配碳量以及磁选电流和磨矿细度对焙烧矿磁选结果的影响。结果表明:随着温度升高, 褐铁矿逐渐还原为磁铁矿, 加热到570~650 ℃时, 生成大量磁铁矿, 750 ℃下焙烧矿烧结严重, 并产生大量弱磁性的硅酸亚铁, 不利于后续磁选。单因素实验结果及分析表明, 褐铁矿微波还原焙烧-磁选最佳工艺条件为:保温时间7.5 min, 焙烧温度650 ℃, 配碳量1.40%, 磁选电流0.6 A, 磨矿细度-0.044 mm。最终获得的铁精矿品位、回收率及产率分别为61.33%、75.11%和40.17%, 达到了炼铁生产入炉要求。  相似文献   

12.
以湖南某地隐晶质胶状结构为主的低硫磷褐铁矿样为对象,进行了磁化焙烧及磨选工艺技术条件研究。试验确定的适宜工艺技术条件为:造球用矿样粒度为-0.074 mm占35%、还原煤添加量为矿样质量的10%,适宜的焙烧温度为800 ℃、焙烧时间为80 min,焙烧产物碎磨细度为-0.045 mm占80%、弱磁选磁场强度为90 kA/m,经1粗1精弱磁选,最终可获得铁品位为58.83%、铁回收率为81.19%的弱磁选精矿。  相似文献   

13.
包钢选矿厂的尾矿铁品位为17.84%,包钢炼铁厂的高炉瓦斯灰铁品位为31.90%、碳含量为29.18%,为了探索这2种工业固体废渣高效综合利用的途径,以瓦斯灰中的活性焦炭为还原剂,以尾矿和瓦斯灰中的赤铁矿为被还原对象,进行了微波加热还原焙烧工艺条件研究,并对焙烧产物进行了磨选工艺条件优选。结果表明:粒度均为74~0μm的尾矿与高炉瓦斯灰按质量比100∶25混合,在570℃下微波磁化焙烧10 min,焙烧产物磨至33~0μm后进行弱磁选(80 kA/m),可获得铁品位为54.50%、铁回收率为83.20%的铁精矿。因此,包钢的这2种工业固体废渣可进行资源化利用,其经济社会价值巨大。  相似文献   

14.
贵州某褐铁矿石为低硫磷褐铁矿石,铁品位为47.14%,铁矿物主要有褐铁矿,纤铁矿、硬锰矿、软锰矿、黄铁矿少量,褐铁矿呈不规则胶状、土状分布,与脉石矿物共生关系密切,磨矿过程不仅难以实现有用矿物与脉石矿物的有效分离,而且容易泥化,因而直接强磁选或重选均难以获得理想的分选指标。为解决该褐铁矿石资源的开发利用问题,采用磁化焙烧—磁选工艺对该矿石进行了选矿试验。结果表明,在无烟煤(2~0 mm)与矿样(3~0 mm)质量比为5%,焙烧温度为850℃,保温时间为40 min,焙烧产物的磨矿细度为-0.074 mm占97.5%,中磁选磁场强度为218.95 kA/m情况下,可获得铁品位为66.23%、铁回收率为97.53%的铁精矿。  相似文献   

15.
针对某难选高铝硅褐铁矿, 开展了氯化离析焙烧-磁选工艺试验研究, 探讨了氯化剂用量、焙烧温度、焙烧时间、磨矿粒度、磁场强度等工艺参数对选矿指标的影响。结果表明: 在氯化剂用量为10%、还原剂用量为20%、焙烧温度为1 000 ℃、焙烧时间为60 min、磨矿粒度为-0.038 mm粒级占97%、磁场强度为133.33 kA/m条件下, 可获得全铁含量70.41%、回收率75.72%、Al2O3含量4.26%、SiO2含量7.89%的H65Ⅱ类铁精矿。  相似文献   

16.
某低品位复杂难选铁矿,铁主要以褐铁矿形式存在,褐铁矿与脉石矿物紧密共生,导致强磁选精矿铁品位偏低,难以获得合格铁精矿。通过试验发现,采用高梯度强磁选预富集—流态化磁化焙烧—弱磁选工艺可以高效利用该褐铁矿,重点考察了焙烧温度、焙烧时间、还原气氛和气量,以及焙烧产品磨矿细度、磁感应强度等参数对强磁精矿磁化焙烧指标的影响。同时,详细分析了焙烧前后试样中铁物相及嵌布特征的变化情况。结果表明,针对铁品位36.58%、粒度为-0.074 mm占83.73%的强磁精矿,在焙烧温度500℃、焙烧时间15 min、还原气体CO浓度20%、总气量600 mL/min,焙烧产品磨矿细度为-0.043 mm占90%、磁场强度0.15 T的试验条件下,采用流态化磁化焙烧—弱磁选工艺,最终获得了产率59.01%、铁品位58.69%和铁回收率85.89%的铁精矿。研究结果为该类难选铁矿资源的高效利用提供了一种新的技术途径。  相似文献   

17.
某难选铁矿石直接还原焙烧磁选研究   总被引:3,自引:0,他引:3  
对某含铁品位为28.82%, 含磷0.35%的难选铁矿石进行了直接还原焙烧磁选研究。研究了焙烧温度、还原剂用量、焙烧时间、助溶剂用量、磨矿粒度以及磁场强度对直接还原铁品位和回收率的影响。在还原剂用量为30%, 助溶剂QK用量为20%, 焙烧温度为1 200 ℃, 焙烧时间为30 min, 一段磨矿粒度为-43 μm粒级含量达到95%以上, 二段磨矿粒度为-30 μm粒级含量达到100%, 一段磁选场强为111.5 kA/m, 二段磁选场强为95.5 kA/m的条件下, 可以获得品位为90.94%, 回收率为82.67%的直接还原铁。  相似文献   

18.
唐立靖  唐云  梁居明 《矿冶工程》2015,35(2):117-119
针对某高铝高硅难选褐铁矿(Al2O3含量26.11%、SiO2含量13.88%)进行了钠化焙烧-磁选试验研究。通过单因素试验和正交试验探讨了钠盐种类、钠盐用量、焙烧时间、焙烧温度、磁选粒度、磁选强度对选别指标的影响, 结果表明, 在焙烧温度1 050 ℃、焙烧时间40 min、Na2CO3用量12%、煤粉用量20%、磨矿细度-0.038 mm粒级占98.86%、磁场强度200 kA/m条件下可获得铁品位57.91%、铁回收率97.50%的铁精矿。钠化焙烧后产品再经阶段磨矿、阶段磁选可获得铁品位62.04%、铁回收率60.90%的铁精矿。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号