首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
为了研究AlFeCrCoNi增强铝基复合材料的微观组织与退火状态下的力学性能,文中以机械搅拌法制备了AlFeCrCoNi/Al,利用光学显微镜和场发射扫描电镜对其宏观及微观形貌进行了观测;采用X射线衍射仪对其物相进行了表征与分析;利用布氏硬度机、阿基米德排水法和电子万能试验机对其力学性能进行了测量与分析。研究结果表明:在颗粒增强金属基复合材料的搅拌铸造制备过程中,实现颗粒均匀分布的一个关键因素是选择适当的增强颗粒含量,而增强颗粒的质量分数控制在10%以下时最为理想;随着高熵合金质量分数的增加,复合材料的致密度明显减小,而布氏硬度明显增加;质量分数为5%的AlFeCrCoNi增强铝基复合材料随着退火时间增加,抗拉强度逐渐增加;AlFeCrCoNi为增强相制备的Al基复合材料的断裂类型为韧性断裂,断裂机理为微孔聚集型断裂。  相似文献   

2.
为了分析Cu元素添加对高熵合金显微组织与微观性能的影响,采用真空电弧熔炼炉制备AlCrFeNi2Cu=1.2,1.4,1.6,1.8)高熵合金,并利用扫描电子显微镜、X射线衍射仪、硬度计和压缩试验机对高熵合金的显微组织和力学性能进行测试.结果表明,AlCrFeNi2Cu=1.2,1.4,1.6,1.8)高熵合金主要由简单FCC相(富Fe-Cr相)与BCC相(富Al-Ni相)组成.随着Cu含量的增加,FCC相数量增加,组织中枝晶变得致密,但当x增加到1.8时,晶粒又变得粗大起来.Cu元素主要富集于枝晶间,随着Cu含量的增加,Cu元素呈现聚集趋势并包裹着树枝晶,当x增至1.8时,上述偏聚包裹现象更为明显.高熵合金的压缩性能和硬度均随Cu元素的添加呈现先上升后下降的趋势.当x为1.6时,高熵合金综合性能最佳,其抗压强度、屈服强度、塑性应变量和维氏硬度分别为2 256 MPa、891 MPa、35.6%和372 HV.x(xx(x  相似文献   

3.
为了分析Cu元素添加对高熵合金显微组织与微观性能的影响,采用真空电弧熔炼炉制备AlCrFeNi_2Cu_x(x=1. 2,1. 4,1. 6,1. 8)高熵合金,并利用扫描电子显微镜、X射线衍射仪、硬度计和压缩试验机对高熵合金的显微组织和力学性能进行测试.结果表明,AlCrFeNi_2Cu_x(x=1. 2,1. 4,1. 6,1. 8)高熵合金主要由简单FCC相(富Fe-Cr相)与BCC相(富Al-Ni相)组成.随着Cu含量的增加,FCC相数量增加,组织中枝晶变得致密,但当x增加到1. 8时,晶粒又变得粗大起来. Cu元素主要富集于枝晶间,随着Cu含量的增加,Cu元素呈现聚集趋势并包裹着树枝晶,当x增至1. 8时,上述偏聚包裹现象更为明显.高熵合金的压缩性能和硬度均随Cu元素的添加呈现先上升后下降的趋势.当x为1. 6时,高熵合金综合性能最佳,其抗压强度、屈服强度、塑性应变量和维氏硬度分别为2 256 MPa、891 MPa、35. 6%和372 HV.  相似文献   

4.
为了探讨C和Cu元素对Al_(0.3)CoFeNi高熵合金微观组织及性能的影响,采用非自耗型真空电弧熔炼法制备了Al_(0.3)CoFeNi,Al_(0.3)CoFeNiC_(0.1),(Al_(0.3)CoFeNi)_(99.9)Cu_(0.1)和(Al_(0.3)CoFeNiC_(0.1))_(99.9)Cu_(0.1)4种成分的高熵合金。运用X射线衍射仪测量合金的晶体结构,采用扫描电镜和透射电镜观察合金的表面形貌和微观组织,利用万能试验机和维氏显微硬度计分别测试合金的压缩力学性能和显微硬度。试验结果表明:Al_(0.3)CoFeNi高熵合金为单一的FCC结构,分别添加1%C和0.1%Cu(原子百分比y/%)均未改变其晶体结构,但合金中析出了纳米相L12相,且0.1%Cu的添加会使L12相的尺寸减小。仅添加1%C时,L12相的颗粒尺寸约为30nm,再添加0.1%Cu后,L12相的颗粒尺寸减小到10nm。力学性能测试结果表明,(Al_(0.3)CoFeNiC_(0.1))_(99.9)Cu_(0.1)合金的综合力学性能最好,其压缩屈服强度、抗压强度、压缩率和显微硬度分别可达为974MPa、2532 MPa、51.9%和511.7HV。  相似文献   

5.
以Al-6Cu-0.2Mg-1Mn合金为基体,采用混合盐原位反应法制备不同TiB2颗粒含量(质量分数分别为1%、3%、5%)的颗粒增强铝基复合材料,对不同处理状态的TiB2颗粒增强复合材料及Al-6Cu-0.2Mg-1Mn合金的相结构与显微组织进行分析,并测试其维氏硬度。结果表明,原位反应生成的TiB2颗粒能改善基体组织,阻止基体晶粒生长的方向性,得到等轴晶;随着增强相TiB2颗粒含量的增加,基体组织得到明显细化;不同处理状态3%及5%含量TiB2颗粒增强复合材料的维氏硬度均显著高于相应Al-6Cu-0.2Mg-1Mn合金的维氏硬度。  相似文献   

6.
以TiB2为基体、SiC为主要添加相、B4C和纳米炭黑为烧结助剂,采用无压烧结方法制备SiC/TiB2复合材料,研究SiC添加量对SiC/TiB2复合材料的显微组织、力学性能及体积电阻率的影响。结果表明:随着SiC含量的增加,复合材料的晶粒尺寸逐渐减小,开口气孔率逐渐降低,抗折强度、断裂韧性及维氏硬度均呈现上升趋势;当SiC的质量分数为20%时,复合材料的力学性能最佳,此时其抗折强度、断裂韧性和维氏硬度分别为189.5 MPa、4.19 MPa·m1/2和15.8 GPa;随着SiC含量的增加,复合材料的体积电阻率增大,导电性能有所降低。  相似文献   

7.
氮对Ti-6Al合金的铸态组织与性能的影响   总被引:1,自引:0,他引:1  
采用熔铸工艺制备了w(N)=0.045~0.27%的原位自生氮化物增强钛铝基复合材料.分析测试了该材料的铸态组织和合金的力学性能.研究结果表明:在Ti-6A l的合金中,当w(N)=0.045~0.27%时,随着氮质量分数的增加,增强体的体积分数有所增加.Ti-6A l-xN中的氮化物较为细小.复合材料的硬度、抗压强度和弹性模量均高于Ti-6A l合金.随着氮质量分数增加材料的抗压强度、硬度和弹性模量增加.由压缩断口分析可知,基体为韧性断裂.随着氮质量分数增加,合金由韧窝 解理断口向具有解理特征的脆性断裂转变.  相似文献   

8.
利用铜模浇铸的方法制备了CoCrFeNiCu2Snx(摩尔比:x=0,0.2,0.4,0.6,0.8,1.0)高熵合金,研究了Sn的含量对合金组织结构和性能的影响。利用XRD、SEM和EDS分析了高熵合金的相结构、微观组织和成分分布,测试了高熵合金的显微硬度和压缩性能。结果表明,当x=0.2,0.4和0.6时,CoCrFeNiCu2Snx合金的组织形貌没有发生明显的改变,但在合金中形成了一种Sn含量较高、新的FCC3结构相,合金由FCC1、FCC2和FCC3三种面心立方的相构成;当x=0.8和1.0时,合金的形貌依然为枝晶状,但FCC2结构相几乎完全转变为富Sn的FCC3结构相,合金中只有FCC1和FCC3两种结构相。合金的屈服强度和显微硬度随着Sn元素含量的增加而提高,当x=1.0时,合金的屈服强度和显微硬度均达到最高值,分别为1102MPa和391HV。  相似文献   

9.
为了研究Al含量对高熵合金AlFeCrCoNi微观组织和力学性能的影响,通过真空电弧炉熔炼制备出AlxFeCrCoNi高熵合金,采用X射线衍射仪、金相显微镜和扫描电镜对合金微观组织进行分析,利用维氏硬度计、拉伸试验机对合金力学性能进行研究.研究结果表明:随着Al含量的升高,强度和硬度不断提高,显微组织由胞状树枝晶转变为柱状树枝晶.当x=0.4时,高熵合金的性能最佳;当x=0.5时,出现了Al-Ni固溶体导致塑性下降,使材料从单一的面心立方晶格(FCC)转变为FCC和少量体心立方晶格(BCC).  相似文献   

10.
为了研究Ti元素对高熵合金的组织和性能的影响,采用放电等离子烧结方法制备了CrTeCoNiTix(x=0.2,0.4,0.6,0.8,1.0)多组元高熵合金。用OM、XRD和SEM等技术分析了合金的微观组织,测试了CrTeCoNiTix高熵合金的硬度、压缩强度及耐腐蚀性能。研究结果表明:不同Ti含量的高熵合金组织形态简单,物相主要为面心立方相。随着Ti含量的增加,高熵合金硬度逐渐增加,最大值达到672.59HV;压缩强度也随之增加,最大值为690.28MPa。在H_2SO_4中的耐腐蚀性随Ti含量增加而降低。  相似文献   

11.
为提高路面板材料的力学性能,以超高分子质量聚乙烯(UHMWPE)为基体树脂、连续玻璃纤维织物为增强体,通过设计挤出模头,釆用熔融浸渍工艺和层压工艺,制备连续玻璃纤维增强UHMWPE复合材料层压板.研究玻璃纤维体积分数(30%、40%、50%和55%)对UHMWPE复合材料拉伸、层间剪切、冲击等性能的影响规律,测试分析不同纤维体积含量条件下的UHMWPE复合材料热性能的变化规律.测试结果表明:当玻璃纤维体积分数分别为50%、40%时,UHMWPE复合材料拉伸强度和层间剪切强度分别达到最大值,分别为675.9 MPa和23.13 MPa,证明增加玻璃纤维的体积含量可有效提高UHMWPE复合材料冲击强度.当温度分别低于70℃和91℃时,UHMWPE复合材料的储能模量与损耗模量随着纤维体积含量的增加而增加.提高UHMWPE复合材料的纤维体积含量,可在一定程度上提高其玻璃化温度.  相似文献   

12.
为了研究固溶处理对铸态Mg-2Zn-3Y合金组织和性能的影响,采用光学显微镜、X射线衍射仪、扫描电子显微镜、拉伸试验机和维氏硬度计对固溶处理后的合金进行了组织分析及性能测试.结果表明:Mg-2Zn-3Y合金中含有LPSO相和W相,随着固溶温度的升高,块状LPSO相区域逐渐出现层片状形貌,W相发生球化、粗化和重熔现象,合金的抗拉强度、屈服强度、伸长率和硬度均呈现先升高后降低趋势;经450℃固溶12 h后,合金的强化效果最佳,抗拉强度为187 MPa,屈服强度为107 MPa,伸长率为8.0%,硬度为82.5 HV.  相似文献   

13.
为研究冷轧态的CoCrNi中熵合金组织与性能的演变,采用真空电弧熔炼法制备CoCrNi中熵合金并进行双辊冷轧轧制,采用不同的热处理工艺,对冷轧后的试样进行退火处理。利用扫描电子显微镜和X射线衍射仪分析其组织与结构的变化;通过显微硬度测试和拉伸试验研究其性能变化。研究结果表明:CoCrNi中熵合金冷轧后退火处理,没有新相的产生,依然是单一FCC结构;在退火过程中发生了再结晶现象,当退火温度为900℃时,由于温度较低,再结晶发生缓慢,随退火时间延长,显微硬度从456 HV降至215 HV,屈服强度从1 570MPa降至400MPa,塑性从5%提高至69%,组织逐渐转变为再结晶后的等轴晶;当退火温度提高至1 000℃时,能快速完成再结晶,退火10min时,显微硬度为219HV,屈服强度和塑性分别为315MPa和71%,随退火时间延长,组织与性能变化均无明显变化;当退火温度继续提高至1 100℃时,由于退火温度较高,再结晶迅速完成,退火10min时,显微硬度为199HV,屈服强度和塑性分别为351MPa和77%,随退火时间和温度的增加,发生晶粒长大,影响材料性能。  相似文献   

14.
为了研究AlFeCrCoNi高熵合金的热处理工艺,文中采用机械合金化法制备了AlFeCrCoNi高熵合金,研究了球磨时间对Al、Fe、Cr、Co、Ni合金相变、晶粒尺寸、颗粒尺寸和球磨粉体形貌的影响,分析了球磨法制备的AlFeCrCoNi高熵合金的退火行为.研究结果表明:随着球磨时间的延长,晶粒尺寸逐渐减小,趋于稳定时其晶粒尺寸为34.球磨60h时,粉体颗粒形貌为球状,颗粒尺寸约为20μm.AlFeCrCoNi高熵合金在加热过程中分别在615.7℃、971.5℃和1 384.3℃出现三个吸热峰,前两个峰表明发生固态相变,1 384.3℃为高熵合金的熔点.  相似文献   

15.
针对铸态高熵合金存在缩孔、夹杂、偏析等问题,采用机械合金化与放电等离子烧结技术制备了CoCrFeNiTi_x(x=0~1.2)高熵合金,研究了Ti含量对合金组织结构和性能的影响。用金相显微镜、X射线衍射仪、扫描电子显微镜对合金的组织结构进行了表征,测试了高熵合金硬度和压缩强度。结果表明:放电等离子烧结后得到的CoCrFeNiTi_x高熵合金主要为面心立方结构,同时有少量Laves相、σ相和R相生成;随着Ti含量的升高,晶粒尺寸减小。CoCrFeNiTi_x高熵合金的硬度与压缩强度均随着Ti含量的增加呈现出先增后减的趋势,当Ti含量x=1时高熵合金的硬度达到最大值670 Hv,Ti含量x=0.6时合金压缩强度达到最大值600 MPa。  相似文献   

16.
采用渗流铸造法制备了体积分数约为40%、60%、80%的不锈钢丝增强AZ91镁合金复合材料.利用万能试验机对其进行压缩实验;并利用扫描电镜观察复合材料的显微组织以及压缩后的断口形貌.结果表明:不锈钢丝在AZ91镁合金基体中的分布随着其体积分数的增加逐步均匀;不锈钢丝与AZ91镁合金界面润湿性较好.压缩试验表明:复合材料的抗压强度较AZ91镁合金抗压强度明显提高,40%、60%、80%体积分数的复合材料断裂强度分别为371、387、553 MPa;随着不锈钢丝体积分数的增加,材料的破坏方式由剪切破坏转变为劈裂.  相似文献   

17.
采用真空感应熔炼和铸造,通过原位自生方式制备体积分数分别为2.5%、5%和10%的TiC增强TC4复合材料,对复合材料相、组织及在室温和高温时的拉伸特性和强化机理进行研究。结果表明:TiC含量较少时,复合材料中的TiC增强相为细条状或小粒状共晶TiC;当TiC体积分数达到10%时,TiC增强相以等轴或枝晶状的初生TiC为主;复合材料室温和高温强度比未复合基体合金有显著提高,但延伸率有所下降;复合材料室温时以C元素固溶强化机制为主,不同TiC含量的复合材料之间强度差别不大,高温时颗粒的载荷传递效应开始起作用,拉伸强度随TiC含量增加而增大。  相似文献   

18.
借助光学显微镜、差示量热扫描仪、扫描电镜,以及硬度、拉伸性能测试方法,分析了Zn元素对Al-Cu-Mg-Ag合金组织和常温力学性能的影响.结果表明:Zn的添加并未改变合金第二相的形态和成分,合金适宜的均匀化制度为510℃×24 h;Zn元素的添加加快了挤压态合金的初始时效反应速度,使合金的峰时效硬度由169 MHV提高到182 MHV,合金的室温拉伸强度和屈服强度分别提高了23 MPa和27 MPa,并且合金的伸长率仍然保持在14%以上的较高水平,其原因可能是Zn元素固溶于基体中,增大了合金的晶格畸变,致使合金硬度增加,并提高了合金的室温力学性能.  相似文献   

19.
田兴华 《宁夏工程技术》2007,6(3):233-234,238
为了分析SiC颗粒增强Al基复合材料中SiC质量分数对材料性能的影响,用粉末冶金法制备了SiC颗粒质量分数分别为10%,15%,20%,25%的铝基复合材料,测定了复合材料的抗拉强度、压缩强度、显微维氏硬度以及线膨胀系数.结果表明,随着SiC质量分数的增加,SiCp-Al复合材料的压缩强度、抗拉强度和显微维氏硬度都得到大幅度提高,而线膨胀系数随着SiC质量分数的增加而降低.说明复合材料的力学性能不符合简单的混合定律.  相似文献   

20.
以2TiC/Ti/Si/0.2Al/TiB2粉为原料,采用热压烧结工艺成功制备了Ti3SiC2/TiB2复合材料。结果表明:不同TiB2含量的试样中主晶相为Ti3siC2与TiB2两相,没有发现其它杂质相;当复合材料中TiB2的体积分数为10%时,其硬度、抗压强度、弯曲强度、断裂韧性都有显著的提高。经热处理后,Ti3SiC2/10%TiB2复合材料的弯曲强度由367.5MPa  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号