首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Graphene was prepared using liquid phase exfoliation and dispersed in an alumina matrix using an ultrasonication and powder processing route. Al2O3–graphene composites with up to 5 vol% content were densified (>99%) using SPS. The fracture toughness of the material increased by 40% with the addition of only 0.8 vol% graphene. However for higher graphene contents the improvement in fracture toughness was limited. Graphene changed the mechanism of crack propagation for the alumina matrix from inter-granular to trans-granular. The formation of an inter-connecting graphene network promoted easy fracture for concentration ⩾2 vol%. Elastic modulus remained nearly constant for up to 2 vol% and decreased significantly for 5 vol% due to the formation of the inter-connecting graphene network. Fracture toughness measured with the indentation and chevron notch methods were consistent up to 2 vol% and at 5 vol% the percolating network of graphene resulted in easy crack propagation with significant discrepancy between the results for the two methods.  相似文献   

2.
This paper presents a study on graphene-reinforced Al2O3-SiCw ceramic composites and the relationship between graphene oxide (GO) loading and the resulting mechanical and electrical properties. Well-dispersed ceramic-GO powders were fabricated using a colloidal processing route. Dense composites were obtained via spark plasma sintering, a technique that has the ability to reduce GO to graphene in situ during the sintering process. The mechanical properties of the sintered composites were investigated. The composite with only a small amount of graphene (0.5 vol.%) showed the highest flexural strength (904 ± 56 MPa), fracture toughness (10.6 ± 0.3 MPa·m1/2) and hardness (22 ± 0.8 GPa) with an extremely good dispersion of graphene within the ceramic matrix. In addition to these exceptional mechanical properties, the sintered composites also showed high electrical conductivity, which allows the compacts to be machined using electrical discharge machining and thus facilitates the fabrication of ceramic components with sophisticated shapes while reducing machining costs.  相似文献   

3.
《Ceramics International》2017,43(14):11376-11389
Al2O3-based composites using exfoliated graphite nanoplatelets (xGnPs) have been developed by powder metallurgy (PM) route using both conventional as well as spark plasma sintering (SPS) processes. Al2O3-0.2, 0.5, 0.8, 3 and 5 vol% xGnP composites have been developed, and the effect of the addition of xGnP on the density, hardness, fracture toughness and wear behaviour of the various Al2O3-xGnP composites have been analyzed. Conventional sintering was done at a temperature of 1650 °C for 2, 3 and 4 h in inert atmosphere, whereas SPS was carried out at 1450 °C under 50 MPa pressure for 5 min. A uniform dispersion of the xGnP in the Al2O3 matrix was observed in the composites upto the addition of 3 vol% xGnP. Results indicate that a significant improvement in hardness, wear resistance and fracture toughness of the composites could be achieved by using xGnP as nanofiller. The hardness and fracture toughness of the composites developed by both conventional sintering and SPS show an increase upto the addition of 3 and 0.8 vol% xGnP respectively. The wear resistance of the composites also shows significant improvement upto the addition of 3 vol% xGnP. The composites developed by SPS have been found to possess superior mechanical properties as compared to the composites developed by conventional sintering. The improvement in the mechanical properties can be attributed to the strong interaction between the xGnP and the Al2O3 matrix at the interfaces and to the toughening mechanisms such as crack bridging and crack deflection.  相似文献   

4.
This paper reports on anisotropy of functional properties of different silicon carbide-graphene composites due to preferential orientation of graphene layers during sintering. Dense silicon carbide/graphene nanoplatelets (SiC/GNPs) and silicon carbide/graphene oxide (SiC/GO) composites were sintered in the presence of yttria (Y2O3) and alumina (Al2O3) sintering additives at 1800 °C in vacuum by the rapid hot pressing (RHP) technique. It is found that electrical conductivity of SiC/GNPs and SiC/GO composites increases significantly in the perpendicular direction to the RHP pressing axis, reached up to 1775 S/m in the case of SiC/GO (for 3.15 wt.% of rGO). Also, thermal diffusivity was found to increase slightly by the addition of GNPs in the SiC/GNPs composites in the perpendicular direction to the RHP pressing axis. But, in the parallel direction, the addition of GNPs showed a negative effect. The formation of graphene domains was observed in reference sample SiC-Y2O3-Al2O3 sintered by RHP, without any addition of graphene. Their presence was confirmed indirectly by increasing electrical conductivity about three orders of magnitude in comparison to the reference sample sintered by conventional hot press (HP). Raman, SEM and TEM analysis were used for direct evidence of presence of graphene domains in RHP reference sample.  相似文献   

5.
《Ceramics International》2017,43(15):12154-12161
We fabricated CuO/Al2O3 green compacts from plate-like Al2O3 and granular CuO powders by multi-press forming and investigated the alumina orientation using Lotgering's method. The results showed that Al2O3 particles preferentially aligned perpendicular to the pressure direction and the orientation degree increased as the forming pressure was increased. We proposed a model describing the movement of the alumina particles to explain the pressure effect on their orientation. The orientation calculation was in good agreement with those by Lotgering's method. Furthermore, we prepared the CuAlO2 compacts by regular or spark plasma sintering (SPS). However, the compacts sintered by SPS exhibited higher orientation degree and density than those produced by regular sintering. The electrical conductivity values of the orientation-controlled compacts sintered by SPS reached 770 S m−1 at 928 K, which was close to that of CuAlO2 single crystal. The power factor of the CuAlO2 compacts with highest orientation degree is as high as 5.95 × 10−5 W m−1 K−1 at 928 K. Therefore, we can conclude that orientation control is an effective method to enhance the thermoelectric performance of compact polycrystalline CuAlO2 bulks.  相似文献   

6.
《Ceramics International》2017,43(2):2143-2149
Graphene has been successfully fabricated by a novel method, using graphite powder and NMP (N-Methyl Pyrrolidone) as the raw materials based on the principles of liquidoid exfoliation and mechanical milling. SEM, TEM and Raman spectrum were utilized to characterize the morphology of the homemade graphene, illustrating the few defects and rare layers were endowed in this study. Afterwards, the homemade and commercial graphene were doped into Al2O3 powder with the mass ratio of 0%, 1%, 2%, and 3% to reinforce the mechanical properties of the matrix. The composites were processed at 1600 °C, pressure of 30 MPa and soaking time of 1 h by vacuum hot pressing. The test results illustrated the bending strength and fracture toughness tended to be intensive at first and subdued afterwards, achieving the optimal performance of 625.4±18.2 MPa and 6.07±0.22 MPa m1/2 at 2 wt% prepared graphene additive, and the commercial grapheme owned the best heighten effect in 3 wt% graphene/Al2O3 composites. Compared to the blank Al2O3 sintered samples, the graphene/Al2O3 specimens (both prepared and commercial additive) behaved evident increase in mechanical properties, even upon 30% enhanced in fracture toughness and bending strength generally by the prepared grapheme. Moreover, the prepared graphene had better improvement effect than commercial graphene in enhancing mechanical properties of Al2O3 ceramic.  相似文献   

7.
Fully dense yttria-stabilized zirconia (YSZ) ceramics reinforced with reduced graphene oxide (RGO) were fabricated by spark plasma sintering (SPS), and their electrical, thermal, and mechanical properties were investigated. Graphene oxide (GO) was exfoliated by a short sonification in dimethylformamide (DMF)/water solution and uniformly mixed with ZrO2 powders. The microstructure of the composites showed that undamaged RGO sheets were homogeneously distributed throughout matrix grains. The electrical conductivity of YSZ composites drastically increased with the addition of RGO, and it reached 1.2 × 104 S/m at 4.1 vol.%. However, the thermal diffusivity increased only 12% with RGO addition. The hardness decreased slightly with RGO addition, whereas the fracture toughness significantly increased from 4.4 to 5.9 MPa1/2. The RGO pull-out and crack bridging contributed to the improved fracture toughness.  相似文献   

8.
《Ceramics International》2017,43(4):3576-3582
The wetability improvement and particle size reduction of alumina/Ni composites through mechanical alloying were addressed. Their effect on the sinterability (at high temperature), mechanical and electrical properties were studied. Al2O3 matrix nanocomposites reinforced with different volume fractions of Ni up to 10 vol% were prepared by mechanical alloying. The milled powders were cold pressed and sintered at different firing temperatures up to 1600 °C. The morphology of powders and the microstructure of sintered bodies were investigated by transmission electron microscopy (TEM) and scanning electron microscopy (SEM) coupled with energy dispersive spectroscopy (EDS), respectively. Furthermore, relative density, apparent porosity, mechanical properties and electrical resistivity of the sintered composites were investigated. The results revealed that Al2O3 matrix was successfully coated with Ni thin film through mechanical alloying; the thickness of coat was increased with increasing the Ni content. Moreover, the increasing of both Ni content and sintering temperature up 1600 °C, led to a remarkable increase in the relative density and facture toughness of the sintered specimen. On the other hand, microhardness and elastic modulus were decreased with increasing of Ni content, while they increased significantly with the increase of sintering temperature. The electrical resistivity was decreased with increasing Ni content and sintering temperature.  相似文献   

9.
Al2O3/Cu (with 30 wt% of Cu) composites were prepared using a combined liquid infiltration and spark plasma sintering (SPS) method using pre-processed composite powders. Crystalline structures, morphology and physical/mechanical properties of the sintered composites were studied and compared with those obtained from similar composites prepared using a standard liquid infiltration process without any external pressure. Results showed that densities of the Al2O3/Cu composites prepared without applying pressure were quite low. Whereas the composites sintered using the SPS (with a high pressure during sintering in 10 min) showed dense structures, and Cu phases were homogenously infiltrated and dispersed with a network from inside the Al2O3 skeleton structures. Fracture toughness of Al2O3/Cu composites prepared without using external pressure (with a sintering time of 1.5 h) was 4.2 MPa m1/2, whereas that using the SPS process was 6.5 MPa m1/2. These toughness readings were increased by 18% and 82%, respectively, compared with that of pure alumina. Hardness, density and electrical resistivity of the samples prepared without pressure were 693 HV, 82.5% and 0.01 Ω m, whereas those using the SPS process were 842 HV, 99.1%, 0.002 Ω m, respectively. The enhancement in these properties using the SPS process are mainly due to the efficient pressurized infiltration of Cu phases into the network of Al2O3 skeleton structures, and also due to high intensity discharge plasma which produces fully densified composites in a short time.  相似文献   

10.
Conductive Al2O3/graphene composites were manufactured by SPS from Al2O3 powders coated with a few graphene layers. Composite powders with a total carbon content of 0.1, 0.6 and 1.0 wt. % were manufactured by chemical vapour deposition. The effect of the graphene content on the microstructure, mechanical and electrical properties of the compacts were studied. Graphene, homogenously located along the grain boundaries, dramatically hindered the Al2O3 grain growth. The continuous interconnected graphene network enhanced electrical properties, achieving percolation threshold as low as 0.6 wt. % of graphene. The content of 1 wt. % of graphene increased electroconductivity by 13 orders of magnitude as compared to the monolithic alumina. The indentation fracture toughness increased by 20 % in specimens with 0.6 wt. % graphene content as compared to pure alumina. The presence of 1.0 wt. % of graphene resulted in a slight decrease of elastic modulus and hardness, but strength decreased by 40 %.  相似文献   

11.
《Ceramics International》2016,42(16):18283-18288
Short carbon fibre (Cf) reinforced silicon carbide (SiC) composites with 7.5 wt% alumina (Al2O3) as sintering additive were fabricated using spark plasma sintering (SPS). Three different Cf concentrations i.e. 10, 20 and 30 wt% were used to fabricate the composites. With increasing Cf content from 0 to 20 wt%, micro-hardness of the composites decreased ~28% and fracture toughness (KIC) increased significantly. The short Cf in the matrix facilitated enhanced fracture energy dissipation by the processes of crack deflection and bridging at Cf/SiC interface, fibre debonding and pullout. Thus, 20 wt% Cf/SiC composite showed >40% higher KIC over monolithic SiC (KIC≈4.51 MPa m0.5). Tribological tests in dry condition against Al2O3 ball showed slight improvement in wear resistance but significantly reduced friction coefficient (COF, μ) with increasing Cf content in the composites. The composite containing 30 wt% Cf showed the lowest COF.  相似文献   

12.
Graphene/ceramic composites are proposed by directly depositing graphene on the insulating Al2O3 particles by chemical vapor deposition without any metal catalysts. Carbothermic reduction occurring at the Al2O3 surface is vital during the initial stage of graphene nucleation and the graphene sheet can connect with neighboring sheets to completely cover Al2O3 particles. The quality and layer number of graphene on Al2O3 can be finely tailored by changing the growth temperature and gas ratio. Graphene coated Al2O3 (G-Al2O3) composites are used as effective fillers of stearic acid (SA) to increase the thermal transport property. By the optimization of the layer number of graphene, size of Al2O3 particles and ratio of G-Al2O3/SA in a quantitative, their thermal conductivities significantly increase up to 11 folds from 0.15 to 1.65 W m−1 K−1. The great improvement is attributed to the high thermal transfer performance of graphene and excellent wettability between graphene and SA. When the G-Al2O3/SA composites with the graphene coated porous Al2O3 foam, the thermal conductivity further reaches to 2.39 W m−1 K−1, and the corresponding latent heat is 38 J g−1. It demonstrates the potential applications of graphene in thermal transport and thermal energy storage devices.  相似文献   

13.
Fully densified B6O materials with Al2O3/Y2O3 sintering additives amounts systematically varied between 0 and 15 vol.% and Al2O3/(Al2O3 + Y2O3) molar ratios of 0.05–1 were prepared by FAST/SPS and HIP at sintering temperatures between 1725 °C and 1900 °C. Their densification and microstructure were correlated with measured mechanical properties. The addition of low additive amounts in the range of 2–3 vol.% was found to increase the fracture toughness and strength from 2.0 MPa m1/2 (SEVNB) and 420 MPa for pure B6O to about 3.0 MPa m1/2 and 540 MPa, but it had no effect on the hardness, which remained at a high level of 30–36 GPa (HV0.4). Higher additive contents did not yield a further improvement in the toughness but resulted in a reduction in hardness and strength.  相似文献   

14.
《Ceramics International》2017,43(12):8643-8647
The Graphene/Mn0.7Zn0.3Fe2O4 composites were synthesized by coprecipitation and sintered by a spark-plasma-sintering (SPS) method. The thermoelectric properties of the sintered composites were evaluated in the temperature range of 343–973 K. The effect of graphene on the thermoelectrical properties of Mn0.7Zn0.3Fe2O4 was investigated. The dispersion of 2 wt% graphene in Mn0.7Zn0.3Fe2O4 effectively enhanced the electrical conductivity and the absolute value of Seebeck coefficient, while thermal conductivity was decreased. The results showed that the maximum ZT value of 0.035 at 973 K was obtained in the composite with 2 wt% graphene.  相似文献   

15.
《Ceramics International》2016,42(7):8597-8603
This paper discusses the influence of nickel–phosphorus coated graphene (Gn–Ni–P) and uncoated graphene (Gn) addition to an alumina matrix and its impact on the mechanical properties of obtained composites. The composites are prepared via powder processing and consolidated using the Spark Plasma Sintering (SPS) method. The effects of the addition of coated graphene and coating thickness on mechanical properties were evaluated. Physical properties such as relative density, hardness and fracture toughness were analyzed. Significant improvement of the fracture toughness (60%) for the composites with 2 vol% Gn–Ni–P compared to reference sample was observed. Moreover, 35% higher KIC was noticed for Gn–Ni–P reinforced composites than for Al2O3–Gn.  相似文献   

16.
Carbon nanotube–alumina (CNT–Al2O3) nanocomposites have been synthesized by direct growth of carbon nanotubes on alumina by chemical vapor deposition (CVD) and the as-grown nanocomposites were densified by spark plasma sintering (SPS). Surface morphology analysis shows that the CNTs and CNT bundles are very well distributed between the matrix grains creating a web of CNTs as a consequence of their in situ synthesis. Even after the SPS treatment, the CNTs in the composite material are still intact. Experimental result shows that the electrical conductivity of the composites increases with the CNT content and falls in the range of the conductivity of semiconductors. The nanocomposite with highest CNT content has electrical conductivity of 3336 S/m at near room temperature, which is about 13 orders of magnitude increase over that of pure alumina.  相似文献   

17.
《Ceramics International》2017,43(3):3448-3452
Ti/Al2O3 composites with different volume percentages of Pr6O11 added (0–12.0  vol.%) were prepared by pressureless sintering at 1600 °C for 1.5 h. The influences of Pr6O11 on the composition, microstructure and mechanical properties of the composites were characterized and investigated. The results showed that Pr6O11 could promote the sintering of the composites by generating some new interfacial reaction products, such as AlTiO2, Pr2Ti2O7 and PrAlO3. Pr6O11 could also inhibit the production of TiAl and Ti3Al by the same mechanism. Additionally, Pr6O11 changed hexagonal alumina to tetragonal alumina. The latter could improve the mechanical properties of the composites by the effects of crack deflection and particle pullout when it was present in proper amounts. Composites showed satisfactory comprehensive properties when the content of Pr6O11 was no more than 3.0 vol.%.  相似文献   

18.
《Ceramics International》2017,43(7):5715-5722
In this study, we report the electrical conductivity and thermal properties of Al2O3-SiC-CNT hybrid nanocomposites processed via ball milling (BM) and spark plasma sintering (SPS). The initial powders and consolidated samples were characterized using transmission electron microscopy (TEM) and field emission scanning electron microscopy (FE-SEM), respectively. A multifunction calibrator and a high-resolution digital multimeter were used to measure the electrical conductivity. The thermal properties were measured using a thermal constants analyser. The SiC and CNT-reinforced alumina hybrid nanocomposites exhibited a significant increase in their room-temperature electrical conductivity, which made them suitable for electrical discharge machining. The Al2O3-5SiC-2CNTs had a high electrical conductivity value of 8.85 S/m compared to a low value of 6.87×10−10 S/m for the monolithic alumina. The addition of SiC and CNTs to alumina decreased its room-temperature thermal properties. The increase in temperature resulted in a decrease in the thermal conductivity and thermal diffusivity but an increase in the specific heat of the monolithic alumina and the hybrid nanocomposites. These properties were correlated with the microstructure, and possible transport mechanisms were discussed.  相似文献   

19.
《Ceramics International》2015,41(8):9813-9822
The effects of hot-pressing (HP) and spark plasma sintering (SPS) methods on the grain size, microstructural features, and mechanical behaviour of graphene nanoplatelet/carbon nanotubes (GNTs) reinforced Al2O3 nanocomposites were comprehensively studied. Different graphene nanoplatelet to carbon nanotube ratios were selected as the overall reinforcement content of composites prepared using HP and SPS. Highly densified samples (>98%) were obtained at 1650 °C under 40 MPa in Ar atmosphere, with dwell times of 1 h and 10 min for HP and SPS respectively. Both types of sample showed a mixture of inter- and transgranular fracture behaviour. A 50% grain size reduction was observed for samples prepared by HP compared to SPS samples. Both types of samples achieved a high flexural strength and fracture toughness of >400 MPa and 5.5 MPa m1/2, whilst SPS samples peaked at relatively lower GNT contents than those for the HP samples. Based on analyses of the morphology, grain sizes and fracture mode, similar toughening mechanisms for both types of sample were observed, involving the complex characteristics of the combined GNT fillers.  相似文献   

20.
Al2O3/TiN/graphene ceramic tool materials were prepared by spark plasma sintering technology and the strengthening and toughening mechanisms were studied. The influence of monolayer graphene content on the mechanical properties and microstructure of the composite material were analyzed and the strengthening and toughening mechanisms were researched. The results showed that with an addition of .5 vol.% graphene the mechanical properties of the material reached the best. The bending strength, hardness, and fracture toughness were 624 MPa, 23.24 GPa, and 6.53 MPa·m1/2, respectively. Graphene existed in the forms of few-layer and multilayer. The toughening mechanism of few-layer graphene was mainly graphene breaking, and that of multilayer graphene included graphene breaking and pulling-out. Graphene could contribute to the uniform growth of grains due to the excellent electrical conductivity and the high thermal conductivity. The addition of nano-TiN introduced many endocrystalline structures and graphene promoted this phenomenon. Micro-TiN grains made the crack extension show a combination of transgranular fracture, intergranular fracture, crack bridging, and crack deflection, while graphene introduced weak grain interfaces and made the crack appear more branches. The layered graphene made the material fracture change from two-dimension to three-dimension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号