首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
准确估计锂离子电池健康状态(state of health,SOH)是保证电动汽车高效安全持久运行的关键。利用数据驱动方法可以提高SOH估计的精度,然而该方法的SOH估计精度高度依赖于所选择的特征与估计模型。特征之间的冗余性和估计模型泛化性不足都将影响电池SOH的准确估计。为了减小数据驱动特征之间的冗余度,增加模型的泛化性并提升SOH估计精度,提出了一种基于主成分分析与鲸鱼优化算法(whale optimization algorithm,WOA)-Elman的SOH估计方法。首先,从充电曲线中提取并选择与锂离子电池老化高度相关的特征,利用主成分分析方法进行特征降维,减小特征之间的冗余度,然后,采用WOA方法优化Elman模型的初始权值与初始阈值,建立WOA-Elman模型,以B01号电池测试数据训练模型,利用B02与B03号电池进行验证,同时,对比常用的长短期记忆神经网络、支持向量回归和极限学习机以及未优化的Elman模型,结果显示,WOA-Elman估计模型的均方根误差为1.2113%。最后,分别采用3组电池实验测试数据交替作为训练集,对其余两组电池的SOH进行估计验证,估计结果的均方根偏差最大仅为0.1771%。因此,本工作的方法可以更准确地估计电池SOH,并且具有更好的泛化性能。  相似文献   

2.
为了提高锂离子电池健康状态(SOH)的预测精准度和稳定性,针对常规特征选取复杂且无法有效利用等问题,提出了一种联合一维卷积(1DCNN)与长短记忆网络(LSTM)的电池SOH预测方法.首先采用多通道串联电压、电流、温度构建多维特征,然后采用1DCNN从样本数据中提取高级数据特征输入LSTM中以有效利用历史信息,最后通过...  相似文献   

3.
锂离子电池的健康状态(state of health,SOH)是电池管理系统的核心问题,对其精确的评估能够保障电池的安全可靠运行.然而在实际应用中,容量较难直接测得,导致SOH估算困难.为了获得准确的SOH,本文提出一种基于注意力改进双向门控循环单元(BiGRU)的锂离子电池SOH估计方法.首先提取电池充放电曲线中的电压、电流与阻抗等参数,通过自编码器(auto encoder,AE)对其降维,提取特征量并减少数据间的冗余性.其次,引入注意力机制(attention mechanism,AM)对输入变量分配权重,突出对SOH估计起到关键作用的特征量.最后,利用BiGRU学习输入变量与容量之间的映射关系,捕获容量衰减下的长期依赖性.在不同充电倍率的电池数据集上的结果表明,该方法对不同类型电池的SOH皆可以实现高精度估计,均方根误差在1.1%以下.  相似文献   

4.
随着锂离子电池(Lithium-ion batteries,LIB)在电动汽车、储能电站和备用电源等领域的广泛应用,准确、及时地估计电池健康状态(State of health, SOH)是确保电池系统运行可靠性和安全性的关键因素。锂离子电池内部复杂的电化学反应和多变的外部使用条件,使得实现精准的健康状态估计具有挑战。随着人工智能、大数据分析等技术的快速发展,电池SOH评估的方法也逐渐多样化。首先介绍电池的老化机理和SOH概念,随后介绍了实验法、基于模型、数据驱动和融合方法,详细分析了每种方法的特点,并比较了在实际应用中相应的优势和局限性。最后,对SOH估算的未来趋势进行了展望。  相似文献   

5.
电池健康状态(state of health,SOH)的准确估算是保证电动汽车高效安全运行的关键。从电化学阻抗谱(electrochemical impedance spectroscopy,EIS)中提取健康特征可实现电池SOH的准确估算,但在线采集EIS数据对车载设备要求较高不易实现,而采集单频率阻抗作为特征进行SOH估算又面临精度较低的问题。针对该问题,本文提出一种基于组合频率特征的SOH估算方法,首先,通过对实验数据进行分析,将前120次循环的10 Hz虚部和后320次循环7.94 Hz的虚部进行组合,形成电池组合频率阻抗特征。然后,基于组合频率阻抗特征,利用B1和B2电池测试数据建立电池SOH估算的长短期记忆(long short term memory,LSTM)神经网络模型,并通过B3和B4号电池数据对模型进行验证。结果显示,采用组合频率阻抗特征建立的SOH估算模型的均方根误差最小为0.3%,相比采用单频率阻抗特征所建立的模型,其误差减小23.9%以上。由此可见,本文所提出的基于组合频率特征的SOH估算方法,不仅阻抗测量过程简单,且估算精度较高,可应用于电池SOH的在线估算。  相似文献   

6.
锂离子电池剩余使用寿命(remaining useful life,RUL)预测对电池的使用维护极为重要,提出一种基于差分电压和Elman神经网络预测锂离子电池RUL的方法.首先,根据美国国家航天航空局(National Aeronautics and Space Administration,NASA)的锂离子电池数据集,分析电池差分电压曲线和充放电曲线,提取电池容量退化特征量;其次,通过Pearson法分析特征量之间的相关性,将充电差分电压曲线初始拐点值、放电差分电压曲线峰值、放电时间、静置时间作为电池RUL预测的间接健康因子;最后,建立以上述间接健康因子为输入,电池容量为输出的Elman神经网络,进行锂离子电池的RUL预测.基于不同间接健康因子和不同神经网络的四种电池容量预测对比实验表明,在间接健康因子中加入充电差分电压曲线初始拐点值和放电差分电压曲线峰值可以提高电池寿命预测精度,Elman神经网络可准确预测电池容量.基于不同循环次数预测电池RUL,预测的平均均方根误差为1.55%.  相似文献   

7.
电化学阻抗谱(electrochemical impedance spectroscopy,EIS)蕴含丰富的电池健康状态(state of health,SOH)信息,但不同频率的电化学阻抗数据间并不相互独立,直接利用全频段EIS数据构建SOH估计模型,往往存在精度低、计算复杂度高等问题。鉴于此,本文提出了一种基于特征选择和高斯过程回归的SOH估计方法,可通过序贯前向搜索策略,结合交叉验证均方根误差指标,逐步搜索阻抗特征子集。基于此,采用基于水平图的多目标可视化决策方法,以均衡模型复杂度与精度为目标,综合考虑特征个数与交叉验证均方根误差,实施阻抗特征子集优选。所提方法已成功地应用于公开发表数据集。相比全频段EIS建模方法,本文作者所提方法可显著提升SOH估计精度,大幅降低EIS测试时间,为电化学阻抗技术应用于SOH在线估计提供理论和技术支撑。  相似文献   

8.
随着大量退役电池梯次利用,对退役动力电池健康状态的准确估计是保障电池梯次利用安全高效运行的前提。针对上述问题,提出基于深度神经网络学习的梯次利用电池健康状态评估方法。根据不同循环次数下梯次利用电池充放电性能的差异性,从梯次利用电池物理特性角度挖掘影响梯次利用电池老化特征的主要参数,利用皮尔逊法计算电池老化特征与梯次利用电池健康状态的相关系数,选取较高相关度特征作为深度神经网络的输入,建立基于深度神经网络学习的梯次利用电池健康状态评估模型。通过美国国家航空航天局Ames卓越预测中心的锂离子电池测试数据仿真实例验证了该文方法的有效性。仿真结果表明,与传统神经网络相比,深度神经网络学习可明显提高梯次利用电池健康状态的预测精度,为退役动力电池健康状态评估提供理论依据。  相似文献   

9.
精准的容量估计对锂离子电池健康管理和预测性维护具有重要意义。近年来,数据驱动的方法被广泛应用于锂离子电池容量估计,然而现有的数据驱动方法大多假设训练和测试数据服从相同分布,当此假设不满足时,模型的预测精度快速下降。现有的基于迁移学习的锂离子电池容量估计方法旨在对齐源域和目标域的整体分布,而忽略了不同层内的特征的可迁移性。针对以上问题,研究了深度迁移学习方法不同层之间的特征可迁移属性,提出了基于分层对齐迁移学习(hierarchical alignment transfer learning,HATL)的锂离子电池容量估计方法。首先,构建了一个基于卷积神经网络的特征提取器,考虑不同层特征的可迁移性,对不同层特征施加最大均值差异约束和通道注意力一致性约束,使得特征提取器从源域和目标域提取到的特征相似且模型更加关注域不变特征;然后,特征经过一个预测器得到容量估计值。在公开的锂电池数据集上进行充分验证,并与其他方法进行对比,结果表明,本文所提的HATL方法具有更高的估计精度,明显优于其他方法。证明了迁移学习方法在跨工况容量估计任务中的有效性和优越性。  相似文献   

10.
锂离子电池剩余使用寿命(RUL)预测是锂离子电池研究的一个重要方向,通过对RUL的准确预测,可以降低锂离子电池出现事故的概率。针对锂离子电池RUL的准确预测,该研究提出一种综合残差神经网络(ResNet)和双向长短期记忆网络(Bi-LSTM)的优势,并且加入注意力机制(Attention)的锂离子电池RUL预测模型。首先选取能够表现电池寿命的特征参数作为输入量,利用ResNet提取输入数据的隐含特征信息,然后利用Bi-LSTM对时间序列信息进行预测,并且结合注意力机制对预测结果进行权重分配,得到最终的锂离子电池的RUL预测结果。通过美国马里兰大学(CALCE)提供的开源数据集进行锂离子电池RUL预测试验,并与现有的预测模型进行对比试验,对比模型的预测结果,试验结果表明提出的ResNet-Bi-LSTM-Attention模型能够准确地进行锂离子电池RUL预测,各项误差都比较低,具有较好的精度和准确性。最后使用美国航空航天局(NASA)提供的锂离子电池开源数据集进行泛化性实验,证明了ResNet-Bi-LSTM-Attention模型在不同电池RUL预测中具有良好的准确性,可以被广泛使用。  相似文献   

11.
由于锂离子电池本身复杂的老化特性,准确预测电池的健康状态和剩余寿命是一个尚未解决的挑战,这限制了消费电子、电动汽车和电网储能等技术的发展.电池的老化机制复杂且相互耦合,难以采用基于模型的方法进行准确的建模.本工作提出了一种基于数据驱动的锂离子电池容量估计方法,通过分析电池的电压-放电容量曲线随循环老化的演变模式,提取具有电化学意义的特征,采用高斯过程回归(Gaussian process regression,GPR)对电池的容量进行预测.该模型的输入特征可以在线获取,不需要对电池进行完整的充放电循环即可估计容量.在钴酸锂电池和磷酸铁锂电池数据集上分别进行了实验验证,结果表明该方法具有较好的泛化能力,对不同类型的电池均能实现准确的容量估计.将本文的方法与阻抗谱作为输入的GPR模型进行对比试验,结果表明该特征能获得更好的估计精度.这一结果说明了合适的特征选择能显著影响锂离子电池的数据驱动模型性能,为电池的状态预测与诊断提供了参考.  相似文献   

12.
高精度的电池荷电状态估计是电动汽车电池管理系统的关键技术之一,其估计精度直接影响能量管理效率和汽车的续航里程。传统的滤波方法基于模型来估计电池SOC,但难以建立锂离子电池精确的数学模型。针对此问题,提出一种基于高斯过程回归的无迹卡尔曼滤波(UKF)锂离子电池SOC估计方法,使用高斯过程回归在有限的训练数据下建立等效电路模型的测量方程,在UKF和高斯过程回归之间建立关联。该模型能够充分联合利用现有实验数据和被预测实时状态数据,实现SOC估计。结果表明,与传统UKF相比,基于高斯过程回归的UKF算法具有较高精确性。  相似文献   

13.
由于电池组中电池单体之间存在性能差异,退役锂离子电池在投入梯次利用前需要借助健康状态(SOH)评估技术进行电池单体的分类与配组。健康状态评估系统的构建涉及电池建模、电池测试、数据处理、算法开发等各种技术问题。目前通过基于模型的参数识别与直接提取健康因子是构建SOH评估体系的两种主要思路。在电池模型的简化、测试工况的设计、健康因子的选择和算法的应用与优化等方面已经有了很多研究。如何在缩短电池测试时间的同时提高评估系统的泛化能力是目前该研究领域的主要问题,这些问题的解决对于SOH评估系统真正在梯次利用锂离子电池的产业化中发挥作用至关重要。在未来的研究中通过优化测试工况和数据融合等技术,有望开发出性能更好的SOH评估系统。  相似文献   

14.
锂电池性能会随使用时间增加而逐步退化,若更换不及时,可能造成爆炸等严重事故。快速准确预测电池健康状态(state of health,SOH),对于锂电池系统管理和维护以及安全使用至关重要。本工作提出一种基于间接健康指标(health indicators,HIs)和高斯过程回归(Gaussian process regression,GPR)相结合预测锂电池SOH的机器学习模型。首先,通过分析锂电池放电过程,提取若干易于获得且适合动态操作的直接外部特征作为间接健康指标,并计算它们和SOH的相关性,最终筛选出平均放电电压、等压降放电时间、最高放电温度和平台期放电电压初始骤降值作为健康指标;其次,以上述健康指标作为输入特征,利用GPR算法建立锂电池退化模型,对NASA锂电池数据集进行预测,平均绝对误差(mean absolute error,MAE)不超过2%,均方根误差(root mean square error,RSME)控制在4%之内;最后,将本工作模型与其他常用机器学习模型进行比较,再将模型带入不同实验条件的电池中进行泛化性能分析,最大预测误差控制在6%之内,实验结果表明,本工作提出的间接健康指标和GPR模型具有相对较高的预测精度和优秀的泛化能力。  相似文献   

15.
回顾了人工神经网络、支持向量回归、高斯过程回归三种主流数据驱动方法在动力电池健康状态(stateof health,SOH)估算方面的研究进展。人工神经网络适合模拟动力电池,能达到很高的精度;支持向量回归计算量小,理论基础完善,在动力电池SOH估算研究中应用广泛;高斯过程回归精度高并能给出预测结果的置信区间,近年相关文献数量呈现增长趋势。针对现行SOH定义未能反映锂电池额定电压衰退的弊端,提出了利用电池满充能量定义SOH。进而分别建立了BP神经网络、支持向量回归、高斯过程回归模型,利用新能源汽车大数据,对电池充电能量进行了预测,定量对比结果验证了三种方法在计算量和精确度方面的特点。最后展望了数据驱动方法与新能源汽车大数据在动力电池SOH估算研究方面的应用前景。  相似文献   

16.
锂离子电池剩余使用寿命(RUL)是电池健康管理的一个重要指标。本工作采用电池容量作为健康状况的指标,使用模态分解和机器学习算法,提出了一种CEEMDAN-RF-SED-LSTM方法去预测锂电池RUL。首先采用CEEMDAN分解电池容量数据,为了避免波动分量里的噪音对模型预测能力的影响,且又不完全抛弃波动分量里的特征信息,本工作提出使用随机森林(RF)算法得到每个波动分量的重要性排序和数值,以此作为每个分量对原始数据解释能力的权重。然后将权重值和不同波动分量构建的神经网络模型得到的预测结果进行加权重构,进而得到锂离子电池的RUL预测。文章对比了单一模型和组合模型预测精度,加入了RF的组合模型预测精度让五种神经网络的表现都有进一步的提升。最后,对表现较好的两种网络——LSTM和GRU引入了简单编码解码(SED)的机制,让其更好地学习到序列数据全局时间上的特征和远程的依赖关系。以NASA数据集作为研究对象进行该方法的性能测试。实验结果表明,CEEMDAN-RF-SED-LSTM模型对电池RUL预测表现效果好,预测结果相比单一模型具有更低的误差。  相似文献   

17.
电池的荷电状态(state of charge,SOC)是电池管理的重要指标之一,准确的SOC估计是保证锂离子电池安全有效运行的必要条件。为提高锂离子电池SOC估计的准确性,本文基于二阶Thevenin等效模型,提出一种将无迹卡尔曼滤波(unscented Kalman filter,UKF)与BP(back propagation)神经网络相结合的SOC估计方法。在通过混合功率脉冲特性测试获取模型参数的基础上,首先利用UKF算法对电池SOC进行初步估计,通过非线性点变换的方法避免了扩展卡尔曼滤波(extended Kalman filter,EKF)在线性化过程中对系统造成的精度损失;其次,构建三层BP神经网络,综合考虑锂离子电池的充放电电压、电流等参数,对估计结果进行修正,将估计误差从初始估计结果中排除,以达到更加准确的估计结果。通过电池充放电测试仪采集锂离子电池在动态应力测试下的充放电数据,并在不同的噪声环境下将本文提出的BP-UKF算法与EFK算法和UKF算法进行对比实验分析。实验结果表明,本文提出的BP-UKF算法的最大误差在2.18%以内,平均误差在0.54%以内,均方根误差在0.0044以内,较EKF算法和UKF算法有较大程度地提升;并且在较大的环境噪声条件下,BP-UKF算法的准确性提升更为明显。  相似文献   

18.
锂离子电池(Lithium-ion batteries, LIBs)广泛应用于储能系统(Energy storage system, ESS)、电动汽车(Electric vehicles,EVs)等领域。然而,电池在运行过程中容量会逐渐下降直至退役。传统方法以80%健康状态(State of health, SOH)作为退役标准,未考虑电池实际衰退速率,不仅不能充分利用健康电池,而且难以有效保障非健康电池的安全性。同时,SOH相等但电池老化特性和衰退速度不一定相同。仅以SOH评价无法准确反映电池老化差异。为此,提出一种锂离子电池全寿命周期个性化退役标准和老化评价方法。以容量衰退梯度和SOH为特征,首次定义全新退役指标(Index of decommissioning,IoD),计算IoD在80%SOH下的分布,获取退役阈值,并以此阈值为标准定义电池退役时刻。提出一种全新的健康状态评价指标—电池容量跳水度(Terminal diving rate,TDR),评价电池在使用过程中出现的非线性老化现象。通过在MIT公开数据集上验证,所提方法计算简单、鲁棒性强,能够实现电池个性化退役,更有效...  相似文献   

19.
电池荷电状态(SOC)作为电池管理系统(BMS)重要参数之一,准确估计SOC尤为重要。由于SOC在估计过程中常会受到电压、电流、充放电效率等众多因素的影响,因此很难准确估计SOC。为了提高SOC的估计精度,本工作提出了基于最小二乘支持向量机(LSSVM)机器学习的锂离子电池SOC估计模型。将该电池的电流、电压和温度作为模型的输入向量,SOC作为模型的输出向量,为了更好的获得LSSVM模型的参数,提出了利用自适应粒子群算法来进行参数优化,从而获得高精度SOC估计模型。通过恒流充放电实验采集的数据,并和未优化的粒子群优化的LSSVM、支持向量机(SVM)神经网络(NN)相比,所提模型的SOC估计精度误差为1.63%,验证了算法的有效性。  相似文献   

20.
使用早期数据准确预测电池剩余使用寿命(RUL)可以加速电池的改进和优化。然而电池退化过程是非线性的,且在早期阶段容量衰减可忽略不计,使得RUL预测具有挑战性。为解决这一问题,本工作使用电池早期循环数据,并构建WOA算法和XGBoost算法的混合预测模型预测RUL。文章首先对电池实验数据进行预处理,观察放电电压-容量退化曲线和容量增量曲线的变化,选取与实际容量状态相关性较高的潜在特征,并将其时间序列数据作为XGBoost预测模型的输入,然后采用WOA算法对模型进行参数优化。最后使用由丰田研究所提供的84个在多步充电和恒流放电条件下的锂离子电池数据进行验证,结果表明所提出模型仅使用前100个周期循环数据即可对整个电池寿命预测,测试误差低于4%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号