首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
A gas-to-liquid (GTL) fuel derived from Low Temperature Fischer-Tropsch process has been tested in an automotive diesel engine fulfilling Euro 4 emissions regulations. Both regulated and non-regulated emissions have been compared with those of a commercial diesel fuel, a commercial biodiesel fuel and a GTL-biodiesel fuel (30% and 70% v/v, respectively) in order to check blending properties, synergistic effects and compatibility between first and second generation production technologies for biofuel consumption in current diesel engines. After presenting a detailed literature review, and confirming that similar efficiencies are attained with the four tested fuels under identical road-like operating conditions (this meaning fuel consumption is inversely proportional to their heating values), significant reductions in smoke opacity, particulate matter emissions and particle number concentration were observed with both GTL and biodiesel fuels, with small changes in NOx emissions. Compared with the reductions in PM emissions derived from the use of biodiesel fuels, those derived from using GTL fuels were quite similar, despite its lower soot emissions reductions. This can be explained by the lower volatile organic fraction of the PM in the case of GTL. By adequately blending both fuels, a considerable potential to optimise the engine emissions trade-off is foreseen.  相似文献   

2.
Efforts are under way to reduce diesel engine emissions (DEE) and their content of carcinogenic and mutagenic polycyclic aromatic hydrocarbons (PAH). Previously, we observed reduced PAH emissions and DEE mutagenicity caused by reformulated or newly developed fuels. The use of rapeseed oil as diesel engine fuel is growing in German transportation businesses and agriculture. We now compared the mutagenic effects of DEE from rapeseed oil (RSO), rapeseed methyl ester (RME, biodiesel), natural gas-derived synthetic fuel (gas-to-liquid, GTL), and a reference petrodiesel fuel (DF) generated by a heavy-duty truck diesel engine using the European Stationary Cycle. Mutagenicity of the particle extracts and the condensates was tested using the Salmonella typhimurium mammalian microsome assay with strains TA98 and TA100. The RSO particle extracts increased the mutagenic effects by factors of 9.7 up to 17 in strain TA98 and of 5.4 up to 6.4 in strain TA100 compared with the reference DF. The RSO condensates caused up to three times stronger mutagenicity than the reference fuel. RME extracts had a moderate but significantly higher mutagenic response in assays of TA98 with metabolic activation and TA100 without metabolic activation. GTL samples did not differ significantly from DF. Regulated emissions (hydrocarbons, carbon monoxide, nitrogen oxides (NOx), and particulate matter) remained below the limits except for an increase in NOx exhaust emissions of up to 15% from the tested biofuels.  相似文献   

3.
Methyl esters obtained from the most interesting Spanish oleaginous crops for energy use—sunflower and Cynara cardunculus—were both used as diesel fuels, pure and in 25% blends with a commercial fuel which was also used pure. A stationary engine test bed, together with the instrumentation for chemical and morphological analysis, allowed to study the effect of these fuels on the engine emissions, soluble organic fraction of the particulate matter, origin of adsorbed hydrocarbons, sulphate content, particle number per unit filter surface, and mean particle diameter. Both the consideration of the thermochemical properties of the tested fuels and the computations of a chemical equilibrium model were helpful for the results analysis. These results proved that the use of these vegetable esters provides a significant reduction on particulate emissions, mainly due to reduced soot and sulphate formation. On the contrary, no increases in NOx emissions nor reductions on mean particle size were found.  相似文献   

4.
A number of investigations have examined the impact of the use of biodiesel on the emissions of carbon dioxide and regulated emissions, but limited information exists on the chemical composition of particulate matter from diesel engines burning biodiesel blends. This study examines the composition of diesel particulate matter (DPM) emissions from a commercial agriculture tractor burning a range of biodiesel blends operating under a load that is controlled by a power take off (PTO) dynamometer. Ultra-low sulfur diesel (ULSD) fuel was blended with soybean and beef tallow based biodiesel to examine fuels containing 0% (B0), 25% (B25), 50% (B50), 75% (B75), and 100% (B100) biodiesel. Samples were then collected using a dilution source sampler to simulate atmospheric dilution. Diluted and aged exhaust was analyzed for particle mass and size distribution, PM2.5 particle mass, PM2.5 organic and elemental carbon, and speciated organic compounds. PM2.5 mass emissions rates for the B25, B50, and B75 soybean oil biodiesel mixtures had 20%–30% lower emissions than the petroleum diesel, but B100 emissions were about 40% higher than the petroleum diesel. The trends in mass emission rates with the increasing biodiesel content can be explained by a significant decrease in elemental carbon (EC) emissions across all blending ranges and increasing organic carbon (OC) emissions with pure biodiesel. Beef tallow biodiesel blends showed similar trends. Nevertheless, it is important to note that the study measurements are based on low dilution rates and the OC emissions changes may be affected by ambient temperature and different dilution conditions spanning micro-environments and atmospheric conditions. The results show that the use of biodiesel fuel for economic or climate change mitigation purposes can lead to reductions in PM emissions and a co-benefit of EC emission reductions. Detailed speciation of the OC emissions were also examined and are presented to understand the sensitivity of OC emissions with respect to biodiesel fuel blends.

Copyright 2012 American Association for Aerosol Research  相似文献   

5.
Hu Chen  Jianxin Wang  Shijin Shuai  Wenmiao Chen 《Fuel》2008,87(15-16):3462-3468
Vegetable methyl ester was added in ethanol–diesel fuel to prevent separation of ethanol from diesel in this study. The ethanol blend proportion can be increased to 30% in volume by adding the vegetable methyl ester. Engine performance and emissions characteristics of the fuel blends were investigated on a diesel engine and compared with those of diesel fuel. Experimental results show that the torque of the engine is decreased by 6%–7% for every 10% (by volume) ethanol added to the diesel fuel without modification on the engine. Brake specific fuel consumption (BSFC) increases with the addition of oxygen from ethanol but equivalent brake specific fuel consumption (EBSFC) of oxygenated fuels is at the same level of that of diesel. Smoke and particulate matter (PM) emissions decrease significantly with the increase of oxygen content in the fuel. However, PM reduction is less significant than smoke reduction. In addition, PM components are affected by the oxygenated fuel. When blended fuels are used, nitrogen oxides (NOx) emissions are almost the same as or slightly higher than the NOx emissions when diesel fuel is used. Hydrocarbon (HC) is apparently decreased when the engine was fueled with ethanol–ester–diesel blends. Fuelling the engine with oxygenated diesel fuels showed increased carbon monoxide (CO) emissions at low and medium loads, but reduced CO emissions at high and full loads, when compared to pure diesel fuel.  相似文献   

6.
《Fuel》2005,84(12-13):1543-1549
A blend of 20% (v/v) ethanol/methyl soyate was prepared and added to diesel fuel as an oxygenated additive at volume percent levels of 15 and 20% (denoted as BE15 and BE20). We also prepared a blend containing 20% methyl soyate in diesel fuel (denoted as B20). The fuel blends that did not have any other additive were stable for up to 3 months. Engine performance and emission characteristics of the three different fuels in a diesel engine were investigated and compared with the base diesel fuel. Observations showed that particulate matter (PM) emission decreased with increasing oxygenate content in the fuels but nitrogen oxides (NOx) emissions increased. The diesel engine fueled by BE20 emitted significantly less PM and a lower Bosch smoke number but the highest NOx among the fuel blends tested. All the oxygenate fuels produced moderately lower CO emissions relative to diesel fuel. The B20 blend emitted less total hydrocarbon (THC) emissions compared with base diesel fuel. This was opposite to the fuel blends containing ethanol (BE15, BE20), which produced much higher THC emission.  相似文献   

7.
Experimental results were obtained by testing two different alcohol-derived biodiesel fuels: methyl ester and ethyl ester, both obtained from waste cooking oil. These biodiesel fuels were tested pure and blended (30% and 70% biodiesel content, volume basis) with a diesel reference fuel, which was tested too, in a 2.2 l, common-rail injection diesel engine. The operation modes were selected to simulate the European Driving Cycle. Pure biodiesel fuels, compared to the reference fuel, resulted in a slight increase in fuel consumption, in very slight differences in NOx emissions, and in sharp reductions in total hydrocarbon emissions, smoke opacity and particle emissions (both in mass and number), despite the increasing volatile organic fraction of the particulate matter. The type of alcohol used in the production process was found to have a significant effect on the total hydrocarbon emissions and on the particulate matter composition. As the alcohol used was more volatile, both the hydrocarbon emissions and volatile organic fraction of the particulate matter were observed to increase.  相似文献   

8.
R. Magnusson  C. Nilsson 《Fuel》2011,90(3):1145-1154
A spark-ignited two-stroke chainsaw engine was used to study the influence of pure oxygenated fuels on exhaust emissions of carbonyls (aldehydes and ketones) and regulated emissions, i.e. hydrocarbons (HC), carbon monoxide (CO), and nitrogen oxides (NOx). Three fuels—methanol, methyl tert-butylether (MTBE), and ethyl tert-butylether (ETBE)—were used in the tests, each at three air/fuel ratios (λ) and the generated emissions were compared to those observed in previous tests with ethanol, aliphatic gasoline, and regular gasoline. Use of all four oxygenated fuels (ETBE, ethanol, methanol and MTBE) resulted in substantially higher total carbonyl emissions (11, 11, 8.9 and 7.8 g/kWh, respectively) than use of both aliphatic and regular gasoline (2.1 and 2.6 g/kWh, respectively). Further, up to 44-fold higher levels of specific carbonyls were generated from the oxygenated fuels than from regular gasoline: significant amounts of formaldehyde were produced from all of the oxygenated fuels, but they were especially high from methanol and MTBE; acetaldehyde was formed in high amounts from ethanol and ETBE; while acetone and methacrolein were formed from both MTBE and ETBE. In addition, increases in λ increased exhaust emissions of formaldehyde, acetaldehyde, acetone, and methacrolein in cases where these were the main carbonyls formed. Increasing λ also variously increased, reduced or had no significant effect on emissions of other measured carbonyls. Lower amounts of CO and NOx emissions were formed from all oxygenates (especially methanol) than from regular gasoline.  相似文献   

9.
Tadao Ogawa 《Fuel》2005,84(16):2015-2025
Field ionization mass spectrometry (FIMS) was investigated to establish a method for clarifying the compositions of hydrocarbons in diesel fuels. Firstly, the influences of reservoir temperature, ion source temperature, emitter current, cathode voltage and ion focusing mode on ion intensities and double bond equivalence value (DBE) distributions were examined to define the analytical conditions for obtaining almost the same carbon number distribution of n-paraffins (DBE=0) as that obtained by gas chromatography. Secondly, the origin of the memory background and the measures to minimize it were examined to obtain the ion intensities of high reproducibility. As a result, variation coefficients of less than 6.4 and 5.1% were obtained for the ion intensity of each hydrocarbon and the sums of the ion intensities of the hydrocarbons with the same DBE, respectively. Finally, two fuels, which were similar in H/C but considerably different in the backend fraction at a distillation temperature of 290 °C (R290), were analyzed by FIMS established in this study, to explain the reasons why these fuels yielded nearly the same particulate emissions. FIMS results showed that a fuel with low R290 consisted of low carbon number aliphatic hydrocarbons and high carbon number aromatic hydrocarbons, both of which have low inflammability. The fuel was found to yield more HC emission than another fuel with high R290. The amount of the particulate emission was larger than that expected from R290.  相似文献   

10.
Pi-Qiang Tan  Zhi-Yuan Hu  Di-Ming Lou 《Fuel》2009,88(6):1086-1091
Five different sulfur content fuels were used on a light-duty diesel engine to study the effect of fuel sulfur on emissions. Four regulated emissions: smoke, nitrogen oxide (NOx), unburned hydrocarbon (HC) and carbon monoxide (CO) emissions of the engine were investigated, as well as three unregulated emissions: formaldehyde (HCHO), acetaldehyde (MECHO) and sulfur dioxide (SO2). The smoke emission decreases continuously and remarkably with the fuel sulfur content, and the fuel sulfur has more influence on smoke emission at lower engine load. The concentration of NOx emissions did not change significantly with the different sulfur content fuels. As the fuel sulfur content decreases, the concentrations of HC and CO emissions have distinct reduction. The HCHO emission values are very low. The MECHO emission decreases with increasing engine load, and it continuously decreases with the fuel sulfur content and it could not be detected at higher engine load with 50 ppm sulfur fuel. The SO2 emission increases continuously with the engine load, and obviously decreases with the fuel sulfur contents.  相似文献   

11.
The effects of mineral diesel fuel, gas-to-liquid fuel, rapeseed methyl ester, neat soybean and neat rapeseed oil on injection, combustion, efficiency and pollutant emissions have been studied on a compression ignition heavy duty engine operated near full load and equipped with a combined exhaust gas aftertreatment system (oxidation catalyst, particle filter, selective catalytic NOx reduction). In a first step, the engine calibration was kept constant for all fuels which led to differences in engine torque for the different fuels. In a second step, the injection duration was modified so that all fuels led to the same engine torque. In a third step, the engine was recalibrated in order to keep the NOx emissions at an equal level for all fuels (injection pressure, injection timing, EGR rate). The experiments show that the critical NOx emissions were higher (even behind the exhaust gas aftertreatment systems) for oxygenated fuels in case of the engine not being recalibrated for the fuel. GTL and the oxygenated fuels show lower emissions for some pollutants and higher efficiency after recalibration to equal NOx levels.  相似文献   

12.
Jet fuel JP-8 is of technical interest to the military aviation industry. JP-8 is now the single battlefield fuel for all US Army and Air Force equipment, replacing gasoline altogether and gradually replacing diesel fuel. Hence, emissions from the combustion of this fuel are the subject for this investigation. The emissions from the combustion of JP-8 fuel are examined and are compared to those from diesel fuel No. 2, burned under identical conditions. Combustion occurred inside a laboratory furnace in sooty diffusion flames, under adverse conditions that typically emit large amounts of products of incomplete combustion (PIC). Under such conditions, even compounds that otherwise might appear only in trace amounts were present in sufficient quantities for detection. The study reports on emissions of CO, light volatile organic compounds, semi-volatile organic compounds with an emphasis on polycyclic aromatic hydrocarbons (PAH), particulate emissions, oxides of nitrogen (NOx) and oxides of sulfur (SO2). Some PAH compounds are suspected of posing a threat to human health, benzo[a]pyrene being listed as a bio-accumulative toxin by the EPA. An afterburner was also used to examine the effects of longer furnace residence time. Results have demonstrated that PAH emissions from the combustion of diesel fuel were higher than those of JP-8, under most conditions examined. Moreover, as the temperature of the primary furnace was increased, in the range of 600–1000 °C, most of the emissions from both fuels increased. Particulate emissions were reduced by the afterburner, which was operated at 1000 °C, only when the primary furnace was operated at the lowest temperature (600 °C), but that condition increased the CO emissions. Overall, transient combustion of these two fuels, burning in laminar and sooty diffusion flames, did not reveal major differences in the emissions of the following PIC: C1–C4 light aliphatic hydrocarbons, PAH, CO and particulate matter.  相似文献   

13.
The effect of fuel constituents and exhaust gas recirculation (EGR) on combustion characteristics, fuel efficiency and emissions of a direct injection diesel engine fueled with diesel-dimethoxymethane (DMM) blends was investigated experimentally. Three diesel-DMM blended fuels containing 20%, 30% and 50% by volume fraction of DMM, corresponding to 8.5%, 12.7% and 21.1% by mass of oxygen in the blends, were used. By the use of DMM, it is observed that CO and smoke emissions as well as the total number and mass concentration of particulate reduce significantly, while HC emissions and particulate number with lower geometric mean diameters (Di < 0.039 μm) increase slightly. For each fuel, there is an increase of ignition delay whereas a decrease of cylinder pressure and heat release rate in the premixed combustion phase when the diesel engine was operated with EGR system. The brake thermal efficiency fluctuates at small EGR ratio, while decreases with the further increase of EGR ratio. With an increase of EGR ratio, NOx emission is reduced at the cost of increased smoke, HC and CO emissions as well as the total number and mass of particulates for each fuel.  相似文献   

14.
The effects of diesel oil-soybean biodiesel blends on a passenger vehicle exhaust pollutant emissions were investigated. Blends of diesel oil and soybean biodiesel with concentrations of 3% (B3), 5% (B5), 10% (B10) and 20% (B20) were used as fuels. Additionally, the effects of anhydrous ethanol as an additive to B20 fuel blend with concentrations of 2% (B20E2) and 5% (B20E5) were also studied. The emissions tests were carried out following the New European Driving Cycle (NEDC). The results showed that increasing biodiesel concentration in the fuel blend increases carbon dioxide (CO2) and oxides of nitrogen (NOX) emissions, while carbon monoxide (CO), hydrocarbons (HC) and particulate matter (PM) emissions are reduced. The addition of anhydrous ethanol to B20 fuel blend proved it can be a strategy to control exhaust NOX and global warming effects through the reduction of CO2 concentration. However, it may require fuel injection modifications, as it increases CO, HC and PM emissions.  相似文献   

15.
We report a positive matrix factorization (PMF) analysis of organic particulate material (PM) emissions of aircraft engine exhaust that includes data from five different aircraft engines and two different fuels (petroleum jet fuel and a Fischer-Tropsch fuel) collected over three field missions. PMF of aerosol mass spectrometer (AMS) data was used to identify six distinct factors: two lubrication oil factors, two aliphatic factors, an aromatic factor, and a siloxane factor. Of these, the lubrication oil factors and the siloxane factor were noncombustion sources. The siloxane factor was attributed to silicone tubing used in the sampling system deployed in one of the three missions included in this study, but not the other two. The two lubrication oil factors correlate with the two different lubrication oils used by the aircraft engines evaluated in this study (Mobil II and Air BP) as well as minor differences presumably due to variation in the blend stocks, temperature history, and analytical factors. Overall, the sum of the aliphatic and aromatic factors decreased with increasing power, as expected based on known trends in VOC emissions. The aliphatic #1 factor correlated with soot emissions, especially at power conditions where EIm-soot was greater than 30 mg kg?1. The aliphatic factor #2 mass spectrum shared some similarities with ambient aerosol organic PM present during the tests and correlated most strongly with dilution levels, two observations that suggest that aliphatic #2 contains components found in ambient aerosol. The aromatic factor correlated with benzene emissions, especially at low power conditions were EIm-benzene was greater than 0.03 mg kg?1. Our results improve the current understanding of aircraft PM composition.

Copyright 2014 American Association for Aerosol Research  相似文献   

16.
This paper presents experimental results of rapeseed methyl ester (RME) and diesel fuel used separately as pilot fuels for dual-fuel compression-ignition (CI) engine operation with hydrogen gas and natural gas (the two gaseous fuels are tested separately). During hydrogen dual-fuel operation with both pilot fuels, thermal efficiencies are generally maintained. Hydrogen dual-fuel CI engine operation with both pilot fuels increases NOx emissions, while smoke, unburnt HC and CO levels remain relatively unchanged compared with normal CI engine operation. During hydrogen dual-fuel operation with both pilot fuels, high flame propagation speeds in addition to slightly increased ignition delay result in higher pressure-rise rates, increased emissions of NOx and peak pressure values compared with normal CI engine operation. During natural gas dual-fuel operation with both pilot fuels, comparatively higher unburnt HC and CO emissions are recorded compared with normal CI engine operation at low and intermediate engine loads which are due to lower combustion efficiencies and correspond to lower thermal efficiencies. This could be due to the pilot fuel failing to ignite the natural gas-air charge on a significant scale. During dual-fuel operation with both gaseous fuels, an increased overall hydrogen-carbon ratio lowers CO2 emissions compared with normal engine operation. Power output (in terms of brake mean effective pressure, BMEP) as well as maximum engine speed achieved are also limited. This results from a reduced gaseous fuel induction capability in the intake manifold, in addition to engine stability issues (i.e. abnormal combustion). During all engine operating modes, diesel pilot fuel and RME pilot fuel performed closely in terms of exhaust emissions. Overall, CI engines can operate in the dual-fuel mode reasonably successfully with minimal modifications. However, increased NOx emissions (with hydrogen use) and incomplete combustion at low and intermediate loads (with natural gas use) are concerns; while port gaseous fuel induction limits power output at high speeds.  相似文献   

17.
《Fuel》2006,85(14-15):2111-2119
Diesel engines exhausting gaseous emission and particulate matter have long been regarded as one of the major air pollution sources, particularly in metropolitan areas, and have been a source of serious public concern for a long time. The emulsification method is not only motivated by cost reduction but is also one of the potentially effective techniques to reduce exhaust emission from diesel engines. Water/diesel (W/D) emulsified formulations are reported to reduce the emissions of NOx, SOx, CO and particulate matter (PM) without compensating the engine’s performance. Emulsion fuels with varying contents of water and diesel were prepared and stabilized by conventional and gemini surfactant, respectively. Surfactant’s dosage, emulsification time, stirring intensity, emulsifying temperature and mixing time have been reported. Diesel engine performance and exhaust emission was also measured and analyzed with these indigenously prepared emulsified fuels. The obtained experimental results indicate that the emulsions stabilized by gemini surfactant have much finer and better-distributed water droplets as compared to those stabilized by conventional surfactant. A comparative study involving torque, engine brake mean effective pressure (BMEP), specific fuel consumption (SFC), particulate matter (PM), NOx and CO emissions is also reported for neat diesel and emulsified formulations. It was found that there was an insignificant reduction in engine’s efficiency but on the other hand there are significant benefits associated with the incorporation of water contents in diesel regarding environmental hazards. The biggest reduction in PM, NOx, CO and SOx emission was achieved by the emulsion stabilized by gemini surfactant containing 15% water contents.  相似文献   

18.
Two potential strategies for reducing diesel emissions are exhaust aftertreatment and the use of reformulated or alternative fuels. Little is yet known about the impact on ultrafine particle emissions of combining exhaust aftertreatment with such increasingly common fuels. This paper reports ultrafine particle size distribution measurements for a study in which the impact of such fuels on emissions from a heavy duty diesel engine employing different aftertreatment configurations was evaluated. Eight different fuels were tested: Canadian No. 1 and No. 2 diesel; low sulfur diesel fuel; two different ultra low sulfur diesel fuels (< 30 ppm S); Fischer-Tropsch diesel fuel; 20% biodiesel blended with ultra low sulfur diesel fuel; and PuriNOx?. The fuels were tested in combination with four exhaust configurations: engine out, diesel oxidation catalyst (DOC), continuously regenerating diesel particle filter (CRDPF), and engine gas recirculation with CRDPF (EGR-DPF). In general, aftertreatment configuration was found to have a greater impact on ultrafine particle size distributions than fuel composition, and the effects of aftertreatment tended to be uniform across the entire particle size distribution. Steady state tests revealed complex behavior based on fuel type, particularly for PuriNOx. This behavior included bimodal particle size distributions with modes as low as 8–10 nm for some fuels. Unlike previous results for gravimetric PM from this study, no significant correlation for ultrafine emissions was found for fuel properties such as sulfur level.  相似文献   

19.
Cenk Sayin  Mustafa Canakci 《Fuel》2010,89(7):1407-1414
In this study, the effects of injection pressure and timing on the performance and emission characteristics of a DI diesel engine using methanol (5%, 10% and 15%) blended-diesel fuel were investigated. The tests were conducted on three different injection pressures (180, 200 and 220 bar) and timings (15°, 20°, and 25° CA BTDC) at 20 Nm engine load and 2200 rpm. The results indicated that brake specific fuel consumption (BSFC), brake specific energy consumption (BSEC), and nitrogen oxides (NOx) emissions increased as brake thermal efficiency (BTE), smoke opacity, carbon monoxide (CO) and total unburned hydrocarbon (THC) decreased with increasing amount of methanol in the fuel mixture. The best results were achieved for BSFC, BSEC and BTE at the original injection pressure and timing. For the all test fuels, the increasing injection pressure and timing caused to decrease in the smoke opacity, CO, THC emissions while NOx emissions increase.  相似文献   

20.
Tie Li  Masaru Suzuki  Hideyuki Ogawa 《Fuel》2009,88(10):2017-354
The effects of ethyl tert-butyl ether (ETBE) addition to diesel fuel on the characteristics of combustion and exhaust emissions of a common rail direct injection diesel engine with high rates of cooled exhaust gas recirculation (EGR) were investigated. Test fuels were prepared by blending 0, 10, 20, 30 and 40 vol% ETBE to a commercial diesel fuel. Increasing ETBE fraction in the fuel helps to suppress the smoke emission increasing with EGR, but a too high fraction of ETBE leads to misfiring at higher EGR rates. While the combustion noise and NOx emissions increase with increases in ETBE fraction at relatively low EGR rates, they can be suppressed to low levels by increasing EGR. Though there are no significant increases in THC and CO emissions due to ETBE addition to diesel fuel in a wide range of EGR rates, the ETBE blended fuel results in higher aldehyde emissions than the pure diesel fuel at relatively low EGR rates. With the 30% ETBE blended fuel, the operating load range of smokeless, ultra-low NOx (<0.5 g/kWi h), and efficient diesel combustion with high rates of cooled EGR is extended to higher loads than with the pure diesel fuel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号