首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
4.混合气体保护焊时,电弧形式和熔滴过渡与二氧化碳气体保护焊有什么区别? [答]:CO_2气体保护焊所采用的电弧形式有“短弧”和“长弧”两种。其中“短弧”焊时,熔滴为典型的“短路过渡”。“长弧”焊时,熔滴是“颗粒状过渡”,这时熔滴不是沿着电弧做轴向过渡(如图2所示),飞溅较大。而且CO_2气体保护焊不存在“射流过渡”形式(使用活化焊丝  相似文献   

2.
双丝旁路耦合电弧熔化极气体保护焊过程中,由于旁路电弧选择了直流正极性接法,采用常规纯氩气保护时旁路熔滴体积较大且过渡过程不稳定。为此,提出采用80%Ar+20%CO_2作为保护气体,通过改变熔滴表面的受力形式,改善旁路熔滴过渡过程。在此基础上,通过建立可以描述旁路熔滴过渡行为的动态数学模型,模拟分析不同受力形式下的旁路熔滴直径变化与过渡过程。结果表明:采用纯氩气保护时,不同旁路电流参数下的旁路熔滴直径为2.6~3.3 mm且难以过渡,采用80%Ar+20%CO_2混合气体保护时,旁路熔滴直径减小至0.6~1.1 mm且过渡频率加快;通过模拟分析不同保护气体成分下电磁力对旁路熔滴过渡的影响,发现采用80%Ar+20%CO_2混合气体保护时旁路熔滴直径减小了50%,与试验结果基本一致,证明了富氩保护气体中加入CO_2可以使得电磁力重新促进旁路熔滴向熔池过渡,从而改善了旁路熔滴过渡过程。  相似文献   

3.
采用激光-电弧复合热源对8 mm厚的高氮钢板进行焊接试验,研究不同保护气体组成对焊缝形貌、熔滴过渡特征和气孔缺陷的影响。结果表明,采用纯氩做保护气体时,熔滴过渡模式以射流过渡为主,并伴有少量排斥过渡;保护气体成分为Ar+N2混合气体时,熔滴过渡模式为短路过渡;保护气体成分为Ar+N2+O2混合气体时,熔滴过渡模式为射流过渡。保护气体的组成对焊缝气孔缺陷也存在一定的影响,保护气体为纯氩时,焊缝气孔率最大,其值为2.52%;保护气体为90% Ar+10% N2时,气孔率最低,仅为0.16%;Ar+N2中添加1%的O2后,气孔率略有升高,但与纯氩时相比,气孔率仍下降明显。采用Ar+N2+O2三元混合气作为保护气体时,能够有效抑制焊缝内气孔数量,同时可以改善熔滴过渡模式,提高焊接过程稳定性。  相似文献   

4.
熔化极气体保护焊接时不同的保护气体成分对焊接过程的飞溅有较大的影响,为确定混合气体保护焊接时不同混合气体配比对焊接飞溅的影响,验证何种混合气体配比更有利于优化焊接过程,通过在90%Ar+10%CO2和80%Ar+20%CO2两种混合气体保护方式下分别进行试板焊接,并对焊后飞溅量、焊接试板的焊缝熔宽、熔深进行对比分析,确定在这两种气体保护下焊接时,焊缝内部均无缺陷,焊缝熔深、熔宽均能满足工艺要求,但在90%Ar+10%CO2的混合气体保护下,且焊接电流控制在300 A条件下焊接时,焊接飞溅量较少,更有利于减少工人清渣时间,提高焊材利用率,提高工作效率及节约成本。  相似文献   

5.
以TIG焊接电弧为对象,依据磁流体动力学理论构建电弧的数学模型,运用ANSYS有限元分析软件对二维稳态下轴对称的、氩氮混合气体保护的TIG焊接电弧进行了数值分析,得到了30%N2+70%Ar(体积分数)混合气体保护下焊接电弧的温度场、速度场的形态分布特征。通过与纯氩气保护的TIG焊接电弧温度、压力以及等离子体速度等分布的比较,得出了加入氮气作为保护气体时的TIG焊接电弧能量及形态的分布变化。对比结果表明,加入氮气作为保护气体,提高了TIG焊接电弧的电弧温度、等离子体速度和电弧压力,能得到更高能量密度的焊接电弧。  相似文献   

6.
分析了GMAW熔滴过渡形态,重点探讨了钛型渣系CO2气体保护药芯焊丝的电弧、熔滴过渡特性,并以工程应用实例论证该类焊丝熔滴主流过渡形态。结果表明,GMAW用焊丝的工艺质量很大程度取决于熔滴过渡形态和电弧行为。熔化极气体保护电弧焊主要熔滴过渡形态是滴状过渡、短路过渡和喷射过渡。钛型渣系CO2气体保护药芯焊丝的电弧形态应属于活动、连续型,在大电流、强规范(含高的电弧电压)条件下施焊时,该焊丝熔滴主流过渡形态是非轴向滴状过渡。  相似文献   

7.
双丝旁路耦合电弧GMAW高效焊接工艺   总被引:3,自引:0,他引:3  
在介绍了双丝旁路耦合电弧熔化极气体保护焊(双丝旁路耦合电弧(Double-electrode gas metal arc welding,DE-GMAW))高效焊接工艺原理的基础之上,采用双闭环反馈解耦智能控制系统,进行双丝旁路耦合电弧GMAW高速焊接工艺试验,测量双丝旁路耦合电弧GMAW母材热输入,分析双丝旁路耦合电弧GMAW高效焊接工艺机理,并对双丝旁路耦合电弧GMAW高效焊接工艺方法进行改进,进一步研究混合气体保护下的双丝旁路耦合电弧GMAW及其熔滴过渡行为,且开发出单电源双丝旁路耦合电弧GMAW。研究表明:采用双闭环反馈解耦智能控制系统使双丝旁路耦合电弧GMAW焊接过程稳定性更好、精确度更高且响应速度更快;旁路分流是实现高效焊接的同时降低母材热输入的关键;采用混合气体保护下的双丝旁路耦合电弧GMAW能进一步提高焊接过程稳定性,单电源双丝旁路耦合电弧GMAW能形成良好的焊缝成形,且设备成本低。  相似文献   

8.
一、窄间隙焊的优点近年来,随着锅炉及化工容器的迅速发展,对厚钢板的焊接技术提出了新的要求,为此发展了窄间隙熔极气体保护焊这种新的焊接方法。窄间隙熔极气体保护焊是一种以较高的熔焊率在窄小的间隙内完成焊缝的高效率焊接法,它利用了气体保护焊无需清渣、电弧热效率高,焊缝成型  相似文献   

9.
以电弧光谱信号传感MIG/MAG焊熔滴过渡的工艺适应性   总被引:1,自引:0,他引:1  
熔滴过渡控制的实现,取决于获得宽工艺适应性的熔滴过渡传感信号。通过试验,获取了熔化极气体保护焊电弧,在不同熔滴过渡形式下的光谱分布、谱线信号的时域波形和频域特征。对试验结果的分析表明,电弧光谱信号在上述诸方面均表现出对不同熔滴过渡形式的适应性,是一种有潜力的高品质熔滴过渡信号源。  相似文献   

10.
1.什么是混合气体保护焊?为什么要采用混合气体保护焊?答;混合气体保护焊是一种气体保护电弧焊,在进行混合气体保护焊时,所采用的保护气体不是单一的气体,如氩气(Ar)、氨气(He)、氢气(H_2)、氮气(N_2)和二氧化碳气(CO_2)等;而是在一种气体中加入一定量的第二种、第三  相似文献   

11.
Ar+O_2 混合气体熔化极脉冲焊时的旋转喷射过渡特征   总被引:4,自引:0,他引:4  
通过高速摄影方法,观察分析了在Ar+O2混合气体熔化极脉冲焊中形成旋转喷射过渡时的电弧形态和熔滴过渡形态。结果表明:当形成脉冲旋转喷射过渡时,熔滴呈液流束的形式向熔池过渡;焊接电弧呈鼓形;焊缝截面呈“扇形”或“锅底”形,它们与脉冲能量及气体物理性质等有关。  相似文献   

12.
1.二氧化碳气体保护焊(以下简称 CO_2焊接)时,“熔滴过渡”是怎么回事?共有几种过渡形式?采用短路过渡的短弧焊为什么适于薄板和空间全位置焊接?[答]:CO_2焊接是一种熔化极气体保护焊,在进行 CO_2焊接时,在电弧的热作用下,焊丝不断地被熔化,液体金属不断地离开焊丝未端进入熔池.这个过程称为“熔滴过渡”。熔滴过渡是 CO_2焊接中的一个重要环节,  相似文献   

13.
正焊接保护气体的重要性焊接气体会直接影响各种气体保护焊(GMA)的焊接工艺,涉及到电弧行为、飞溅形成、熔深轮廓、烟尘形成、焊接速度和其他更多的方面,这些影响都是由于不同气体成分的物理和化学特性所致。对于气体保护焊(GMA),两个主要的参数是送丝速度(WFS)和电压。参数的设定和焊接气体的选择会产生不同的电弧类型。无论是大颗粒或喷射,有无短路状态,这些电弧类型都能体现出材料过渡的特点。在相同的送丝速度下,如果使用CO2保护气体就会产生严重的、粗糙的熔滴大颗粒过渡,形成大量飞溅,成为飞溅部分的焊丝并未成为有价值的焊缝金属。使用林德科焊刚CORGON?系列保护气体进行焊接,会得到相对较好的熔深,并且避免发生未熔合的现  相似文献   

14.
一、窄间隙焊的优点近年来,随着锅炉及化工容器的迅速发展,对厚钢板的焊接技术提出了新的要求,为此发展了窄间隙熔极气体保护焊这种新的焊接方法。窄间隙熔极气体保护焊是一种以较高的熔焊率在窄小的间隙内完成焊缝的高效率焊接法,它利用了气体保护焊无需清渣、电弧热效率高、焊缝成型容易控制等特点。焊缝的间隙不论钢板多厚,均为10~14毫米,并仅以单  相似文献   

15.
借助高速摄像手段研究不同保护气氛下(Ar+CO2和Ar+O2)、不同焊接电流大小的直流正接MAG焊的电弧及熔滴过渡特性,分析电弧烁亮球的成因及其对直流正接MAG焊接过程稳定性的影响特点,并在此基础上确立直流正接MAG焊的工艺区间,同时比较焊丝极性对MAG焊焊丝熔化系数的影响。试验结果表明,当保护气体采用Ar+CO2时,熔滴过渡方式基本上呈大滴排斥过渡,焊接过程不稳,飞溅较大,难以应用;当保护气体采用98%Ar+2%O2时,稳定的直流正接MAG焊的熔滴过渡方式可分为小电流滴状过渡和大电流射流过渡,其中前者为下垂滴状过渡,并且熔滴尺寸随着焊接电流的增大而减小,而熔滴过渡频率相应提高,后者的电弧烁亮区分为上下相串联的两部分,调节电弧电压可以控制电弧烁亮球的活动范围并能改善焊接过程的稳定性。  相似文献   

16.
9.氩 氦(Ar He)混合气体保护焊有什么特点? [答]:为了讲清氩 氦(Ar He)混合气体保护焊的特点,先介绍氩(Ar)与氦(He)各自的特点。氩与氦都是惰性气体,都可以作为焊接时的保护气体。氩气比空气重,用氩作焊接时的保护气体,不仅对焊接熔池有良好的保护作用,而且电弧燃烧稳定。进行熔化极氩弧焊时,焊丝熔化金  相似文献   

17.
研究激光和Ar+He混合气体中He气体体积分数对激光+双丝脉冲MAG复合焊焊接稳定性的影响。搭建激光+双丝脉冲熔化极活性气体保护(Metal active-gas, MAG)复合焊焊接系统,利用LabVIEW信号采集系统采集焊接电流和电弧电压波形,借助高速摄像系统同步拍摄电弧形态和熔滴过渡过程,实时监测焊接过程。观察后丝短路和前丝断弧情况并对前丝电弧电压进行单因素方差分析,研究Ar+He混合气体中He气体体积分数对焊接稳定性影响;比较焊接过程中激光的有无对熔滴过渡的影响,分析激光对焊接稳定性影响。结果发现随着He气体体积分数增大,后丝对应短路次数增多,当He气体体积分数为50%时,前丝出现断弧现象,大于50%,断弧时间随之增加,焊接稳定性变差;激光+双丝脉冲MAG复合焊和双丝脉冲MAG复合焊相比,加入激光可稳定电弧,为熔滴提供一附加力,该力促进熔滴过渡,使熔滴过渡尺寸减小,加大过渡频率,改善熔滴过渡,提高焊接稳定性。  相似文献   

18.
时东峰 《中国机械》2014,(24):143-144
随着科学技术的发展,焊接技术在不断地进行改革。熔化极气体保护焊是实际的焊接生产中应用比较广泛的—种焊接方法,近些年来混合气体逐渐的应用于熔化极气体保护焊的方法之中。不同的混合气体成分以及不同混合气体的配比对于熔化极保护焊的工艺性能以及焊接的效果质量的影响也有所不同。本文阐述了混合气体在熔化极保护焊中的现状以及不同的混合气体的组成配比在熔化极气体保护焊中的效果。  相似文献   

19.
MAG(Metal Active Gas Arc Welding)是将连续送进的焊丝作为熔化极,以电弧作为热源熔化焊丝和母材,并采用活性混合气体作为保护气体的熔化极活性混合气体保护焊。本文针对厚度为1m m、2m m、3m m沉淀硬化不锈钢0Cr15Ni5Cu2T i板材,采用MAG焊接工艺实验,得出一组合理的焊接工艺参数,通过切实可行的MAG焊接工艺,提高了生产效率,为后续产品的批量生产打下坚实的基础。  相似文献   

20.
为了克服目前镀铜CO2气体保护焊丝在生产及应用过程中环保性较差的现状及其焊接工艺性能的不足,研究一种表面特殊涂层的CO2气体保护实芯焊丝。其特殊涂层物质含有耐磨剂、活化剂、防锈剂和导电剂等物质,严格控制涂层量和焊丝表面粗糙度,明显改善了焊丝与导电嘴之间的导电稳定性能,焊接电弧稳定性提高,焊接飞溅明显减少,熔敷效率提高,焊缝成形改善,焊接烟雾明显减少。同时,焊丝制造过程中的排放大大减少.而且显著改善了CO2气体保护焊丝的环保性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号