首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
采用共沉淀法合成LiNi0.5Mn0.5O2正极材料.采用X射线衍射(XRD)和扫描电镜(SEM)表征合成材料的结构和形貌.研究不同Li/(Mn+Ni)摩尔比、不同焙烧制度、不同化成制度对LiNi0.5Mn0.5O2的电化学性能的影响.结果表明,当Li/(Mn+Ni)摩尔比1.08、一次焙烧温度为500℃,二次焙烧温度为850℃下焙烧得到的材料电化学性能最佳.  相似文献   

2.
采用共沉淀法合成LiNi0.5Mn0.5O2正极材料.采用X射线衍射(XRD)和扫描电镜(SEM)表征合成材料的结构和形貌.研究不同Li/(Mn+Ni)摩尔比、不同焙烧制度、不同化成制度对LiNi0.5Mn0.5O2的电化学性能的影响.结果表明,当Li/(Mn+Ni)摩尔比1.08、一次焙烧温度为500℃,二次焙烧温度为850℃下焙烧得到的材料电化学性能最佳.   相似文献   

3.
采用共沉淀-高温固相法制备LiNi0.6Co0.1Mn0.3O2锂离子正极材料,并使用X 射线衍射仪(XRD)和扫描电镜(SEM)技术分别表征其结构和形貌.然后将所得LiNi0.6Co0.1Mn0.3O2正极材料组装成扣式电池,并表征其电化学性能,探讨烧结温度和锂配量对其电化学性能的影响.结果表明:所得LiNi0.6Co0.1Mn0.3O2正极材料的放电比容量随烧结温度的升高而增大,且在900℃时表现出最佳的电化学性能.室温下,1C倍率下,锂配量(n(Li)/n(Ni+ Co+ Mn)=1.09)时,正极材料的首次放电容量为143.7 mAh/g,50次循环后,正极材料的放电比容量仍有141.3 mAh/g,容量保持率为98.3%.  相似文献   

4.
采用碳酸盐共沉淀法合成Li1+xNi0.6Co0.2Mn0.2O2Fx正极材料,研究了不同含量的Li、F复合掺杂对LiNi0.6Co0.2Mn0.2O2样品的晶型结构、形貌以及电化学性能的影响.研究结果表明:Li、F复合掺杂未改变LiNi0.6Co0.2Mn0.2O2样品的层状结构;掺杂后的样品颗粒细化;电化学循环性能和电极过程的可逆性明显得到提高.掺杂量x=0.06时,Li1+xNi0.6Co0.2Mn0.2O2Fx样品的首次充放电容量分别为168,160 mA·h/g,循环50次后容量为153 mA·h/g.  相似文献   

5.
采用基于密度泛函理论的第一性原理超软贋势平面波法,对LixNi0.5Mn0.5O2的几何结构进行优化,并计算相应的电子结构和平均嵌锂电压.结果表明:x=1时,费米能级上分布着Ni、Mn d轨道电子和部分O2p轨道电子,层状LiNi0.5Mn0.5O2是电子的良导体;O2p轨道与Ni、Mn形成较强的共价键, Ni-O与Mn-O具有相近的键长,抑制了LiNiO2与m-LiMnO2中的因Jahn-Teller效应导致的八面体扭曲,且Mn-O键长在充放电过程中保持不变,材料具有稳定的结构;Li在晶胞中以主要离子态的形式存在,有利于脱嵌与传输.随着锂离子的脱出,材料的带隙增加,导电性能变差.  相似文献   

6.
本研究通过碳酸盐共沉淀法合成前驱体,并与碳酸锂混合,经高温焙烧得到锂离子电池正极材料0.5Li2MnO3·0.5LiMn0.5Ni0.5O2。对分别在750℃、850℃、950℃最终烧结温度下合成的材料进行了比较,在一定条件下能得到较好的综合电化学性能。  相似文献   

7.
采用多元醇法合成了介孔Ce0.5Zr0.5O2(m-Ce0.5Zr0.5O2)复合氧化物,研究了m-Ce0.5Zr0.5O2和焙烧温度对Cu基催化剂富氢条件下CO氧化性能的影响,并运用XRD、TPR、TPD、比表面和孔径测定等技术对载体及催化剂进行了表征.结果表明,多元醇法合成的m-Ce0.5Zr0.5O2具有较大比表面积和均一的立方萤石结构.与CuO/Ce0.5Zr0.5O2催化剂相比,CuO/m-Ce0.5Zr0.5O2催化剂具有较好的催化活性,归因于该催化剂具有较大的比表面积和高分散的CuO.焙烧温度对CuO/m-Ce0.5Zr0.5O2催化剂的性能有较大的影响,其中以673K焙烧所制备的催化剂活性最好.  相似文献   

8.
采用改进溶胶-凝胶法合成了具有良好的晶体结构和电化学稳定性的正极材料Li[Ni1/3Co1/3Mn1/3]0.9Ti0.1O2,通过优化前驱体的制备来提高原子混合程度,从而达到改善材料循环稳定性的目的。XRD测试表明,样品的Li+/Ni2+混排程度很低,TEM图片显示材料的结晶度很高,原子排列有序,这有利于实现更大的锂离子扩散系数。在0.5 C倍率下循环200次后,材料的容量保持率高达84.6%,与未掺钛的LiNi1/3Co1/3Mn1/3O2仅为52.0%相比,钛掺杂的材料表现出优异的电化学性能。此外,掺钛材料在0.1、0.2、0.5、1.0、2.0和5.0 C时具有更好的充放电倍率性能,分别为164.9、162.4、152.4、142.4、129.7和102.8 mAh/g。研究成果可以为设计具有更好电化学性能的锂离子电池材料提供参考。  相似文献   

9.
碳酸盐共沉淀法合成LiNi1/3Co1/3Mn1/3O2及其电化学性能   总被引:1,自引:1,他引:0  
以碳酸盐共沉淀法合成了Ni1/3Co1/3Mn1/3CO3前驱体,然后以Ni1/3Co1/3Mn1/3CO3和LiOH·H2O为原料,合成出了层状锂离子电池正极材料Li Ni1/3Co1/3Mn1/3O2.通过XRD,SEM和电化学测试对Li Ni1/3Co1/3Mn1/3O2材料的结构、形貌及电化学性能进行了测试和表征.结果表明,800℃烧结12 h所合成的样品粒度大小分布比较均匀,以0.2 C充放电,其首次放电容量为153 mAh·g-1,循环30次后容量为140 mAh·g-1.  相似文献   

10.
采用共沉淀法合成镍钴锰氢氧化物前躯体,使其和碳酸锂混合均匀后,高温焙烧合成锂离子正极材料LiNi0.5Mn0.3Co0.2O2,研究了掺杂Al(OH)3对材料循环性能的影响.用X射线衍射和扫描电镜对合成的粉末进行了表征,用电性能测试仪研究了材料的电化学性能.研究发现:温度为850 ℃时焙烧的材料具有最优的电性能,1C电流初始放电比容量达到157.2 mAh/g(2.75~4.2V),循环50次放电比容量保持率为94.8 %,循环100次材料的放电比容量保持率为90.1 %.通过少量掺杂Al(OH)3的电池材料结晶性有所提高,晶型趋于完整,但是材料的放电比容量有所降低,前100次循环掺杂对材料循环稳定性无显著改善效果.   相似文献   

11.
采用共沉淀和固相烧结工艺制备LiNi0.5Mn1.5O4和LiCr0.1Ni0.45Mn1.45O4正极材料,对其比表面积、振实密度、倍率性能、高低温循环性能等性能指标进行测试,并利用SEM、XRD对所制材料进行形貌观察及物相分析。结果表明:添加微量Cr元素可稳定材料结构,降低比表面积,改善LiNi0.5Mn1.5O4材料电化学性能;LiCr0.1Ni0.45Mn1.45O4正极材料振实密度可达到2.32 g/cm3,比表面积可达到0.51 m2/g,25℃下1.5C充放电,最高容量达到127.2 m A·h/g,300次循环后容量保持率为94.9%;50℃下1.5C充放电,初始容量达到128.5 m A·h/g,200次循环后容量保持率为88.7%。经XRD分析,循环完成后材料尖晶石的结构没有变化。  相似文献   

12.
阐述了尖晶石材料LiNi0.5Mn1.5O4的晶体结构及其主要制备方法,介绍了纳米合成、元素掺杂、表面修饰等提高材料充放电倍率及改进其电化学性能的研究成果,并展望了该材料在未来先进锂离子电池中的应用前景。  相似文献   

13.
非均匀沉淀法包覆合成LiNi0.9 Co0.07 Mn0.03O2锂离子正极材料   总被引:1,自引:0,他引:1  
采用非均匀沉淀法包覆合成了LiNi0.9Co0.07Mn0.03O2锂离子正极材料.前驱体合成中各工艺条件与包覆材料的比表面积和电化学性能息息相关.试验研究了沉淀剂、搅拌速度、pH值和氨水浓度对包覆沉淀的影响及煅烧过程对材料电化学性能的影响.结果表明:在优化实验条件下Co/Mn复合包覆在β-Ni(OH)2表面上;正极LiNi0.9Co0.07Mn0.03O2首次放电容量为195mAh·g-1,50次循环后容量仍保持为188.6mAh·g-1.循环伏安研究表明:与LiNiO2相比,Co/Mn复合包覆合成正极材料LiNi0.9Co0.07Mn0.03O2的相变得到很好的抑制,材料显示出良好的循环性能.  相似文献   

14.
以硫酸锰、硫酸镍、氢氧化钠等为原料,先用氢氧化物共沉淀法制备前驱体,然后再用高温固相合成法合成富锂锰基正极材料Li1.07Mn0.53Ni0.4 O2,研究不同的烧成温度和配锂量对Li1.07Mn0.53 Ni0.4O2正极材料结构和电化学性能的影响.研究表明:随着烧成温度的增加,材料的放电容量也随之升高;随着锂含量的...  相似文献   

15.
采用二次高温煅烧法制备了三元复合正极材料LiNi0.5Co0.2Mn0.3O2,用SEM、XRD和蓝电测试仪等对其结构和物理化学性能进行表征和测定。结果表明,材料具有较好的层状结构,在2.75~4.25V下0.2C放电容量达到151mAh/g,经50次充放电循环后,放电容量仍为初始放电容量的93%,放电容量保持率较高,是一种电化学性能优良的三元正极复合材料。  相似文献   

16.
采用复合包覆法合成了锂离子正极材料LiNi0.9Mn0.03Co0.07O2,前驱体的合成过程条件与最终包覆的材料性能有关。讨论了包覆沉淀反应过程中沉淀剂、pH值、搅拌速度和氨水浓度对电化学性能的影响。同时还考察了煅烧制度对材料电化学性能的影响。结果表明:在优化条件下Co,Mn均匀包覆在β-Ni(OH)2表面上;合成的正极材料LiNi0.9Mn0.03Co0.07O2在电压范围3~4.3V,电流密度30mA·g^-1下,第二次放电容量为194mAh·g^-1,50次循环后容量仍保持为189mAh·g^-1,材料循环性能稳定。  相似文献   

17.
利用共沉淀合成的锰镍氢氧化物前躯体,采用Si掺杂合成Li[Li0.15Mn0.575Ni0.275]1-xSixO2(0≤x≤4%)正极材料.用X射线衍射和扫描电镜对合成的粉末样品进行了表征,研究了材料的电化学性能.通过掺杂样品的晶胞参数及电化学性能研究发现:少量的Si4+掺杂可有效提高材料的循环性能;随掺杂量的增大,晶格畸变增大,半高宽变大;其中掺量x=1%的材料电化学性能最佳,4.2 V首次放电容量为146.7 mAh/g,经200次循环放电容量仍保持在135.7 mAh/g,容量保持率为92%.  相似文献   

18.
采用废旧锂离子电池正极材料LiNi0. 5Co0. 2Mn0. 3O2为原料,以H2SO4为浸出剂,H2O2为还原剂酸浸回收有价金属Li,Ni,Co,Mn;分别考察H2SO4浓度、H2O2浓度、固液比、浸出温度和浸出时间对浸出过程的影响,结果表明:在H2SO4浓度2. 5 mol·L-1、H2O23. 0%(原子分数)、固液比50 g·L-1、温度45℃、反应60 min的最佳条件下,Li,Ni,Co,Mn的浸出率均超过98. 5%。通过X射线衍射(XRD)和扫描电子显微镜和能量色散X射线谱(SEM-EDS)对不同浸出阶段的材料进行表征,可以得出废LiNi0. 5Co0. 2Mn0. 3O2在浸出过程中形貌和结构逐渐被破坏,在浸出终点衍射特征峰基本消失,表明废LiNi0. 5Co0. 2Mn0. 3O2被浸出完全,浸出渣只剩乙炔黑和黏结剂聚偏氟乙烯(PVDF)。采用未反应核收缩模型和Avrami方程模型对浸出动力学数据进行拟合,其中Avrami方程模型显示最佳相关性拟合,动力学分析显示,在30~75℃下Li,Ni,Co,Mn 4种金属离子的活化能分别为78. 39,81. 63,83. 07,82. 66 kJ·mol-1,表明浸出过程的速率控制步骤是表面化学反应。  相似文献   

19.
层状Ni-Mn基锂离子电池正极材料进展   总被引:1,自引:1,他引:1  
层状Ni—Mn基锂离子电池正极材料具有层状结构镍酸锂(LiNiO2)的高比容量以及尖晶石型结构锰酸锂(LiMn2O4)的高安全性、低价格等特点,是最有可能代替或部分代替LiCoO2的新型正极材料用于小型锂离子电池,同时也可望用作低成本、高安全性和大容量动力型锂离子电池的正极材料。本文综述了层状Li—Ni—Mn—O系化合物和LiNi1/3Mn1/3Co1/3O2的合成工艺、结构特点和电化学性能,阐述了层状Ni—Mn基锂离子电池正极材料的发展、研究开发现状和应用前景。  相似文献   

20.
采用软化学的方法合成了LiNi0.70Co0.20M0.10O2(M=Al, Mn)锂离子电池正极材料, 分析了材料的结构及电化学特性. XRD分析发现采用软化学法合成的两试样其衍射峰比较尖锐, 强度较高, 说明试样结晶良好, Al、 Mn均达到了连续固溶, 形成了LiNi0.70Co0.20M0.10O2(M=Al, Mn)固溶体. 采用两种方法初步估算了LiNi0.70-Co0.20Al0.10O2在充放电过程中的扩散系数的数量级为10-11~10-12cm2/s; 采用软化学法制备的LiNi0.70-Co0.20M0.10O2(M=Al, Mn)正极材料无论从结构还是电化学性能上均表现出较好的综合性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号