首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
In recent years, quagga mussels (Dreissena rostriformis bugensis) have almost completely replaced zebra mussels (Dreissena polymorpha) in the Lower Great Lakes. As recreational boats are the main vector of spread for dreissenids in North America, this study examined whether lakes Erie and Ontario could still be sources for the spread of zebra mussels. In the summer–fall of 2010, the abundance of each species of Dreissena on 196 boats from 5 marinas in lakes Erie and Ontario was examined. Additional samples of Dreissena in 2010–2012 were collected in tributaries, bays, and in the upper littoral zones of these lakes. A total of 77 boats were fouled by Dreissena, and of those 61 were fouled by both species, 13 were fouled just by zebra mussels, and only 3 were fouled solely by quagga mussels. Although quagga mussels compose ~ 99% of dreissenids in eastern Lake Erie and in Lake Ontario, on boats at most marinas sampled, zebra mussels were usually more abundant and significantly larger than quagga mussels. Refugia for zebra mussels were found in bays, tributaries, and upper littoral zones with high wave activity. Thus, although quagga mussels are now more abundant than zebra mussels within the Lower Great Lakes, these waterbodies still have the potential to be a source for the spread of zebra mussels, and for some vectors, the propagule pressure from zebra mussels is likely greater than that from quagga mussels.  相似文献   

2.
The distribution, density, biomass and size-structure of the zebra mussel (Dreissena polymorpha) population in Lake Winnipeg were examined between 2017 and 2019. Zebra mussels have colonized most of the available hard substrate in the south basin and Narrows region, but colonization of the north basin remains low at present, even on suitable substrate. Numerical densities and shell free biomass peaked at 5530 ± 953 m?2 and 64.7 ± 57.9 g shell free dry mass m?2 respectively. The distribution appeared to be strongly limited by substrate type and availability, with further limitations on the distribution imposed by physical disturbance in shallow waters and unsuitable substrate in deeper areas of the lake. Zebra mussels <1 year old dominated the populations, and individuals >18 mm were exceedingly rare. Poor recruitment was observed at sites along the eastern side of the south basin compared to elsewhere in the lake. The proximate causes of these differences in colonization success and recruitment are not clear, but may be in part due to heterogeneous patterns of key physico-chemical environmental conditions such as calcium concentrations required for successful development of juvenile mussels and colder water temperatures in the north basin. This study provides a baseline of information on which to track further expansion of zebra mussels in Lake Winnipeg and assist efforts to develop an understanding of how zebra mussels may affect the ecology of Lake Winnipeg.  相似文献   

3.
Freshwater drum (Aplodinotus grunniens) may be a predator of the invasive zebra mussel (Dreissena polymorpha), which established in Lake Winnipeg in 2013. In this study, the diets, trophic position, and growth of 51 freshwater drum collected in 2019 (six years post-zebra mussel invasion) were compared to 64 freshwater drum sampled in 2000. Benthic insect larvae were the dominant food items in both years. Although mollusks occur in high densities in Lake Winnipeg, they were only consumed by a few freshwater drum in either sample year. Zebra mussels were not a frequent prey item in 2019 as they were only consumed by four of the sampled freshwater drum. Stable isotope analysis of white muscle tissue yielded similar δ13C and δ15N values in both years and were consistent with a benthic, insectivorous diet. Length-at-age data derived from otoliths revealed that the 2019 population had at least an equal growth rate to the 2000 population. Weight-at-length data suggested that fish condition was greater in 2019 than in 2000, which coincided with increased benthic macroinvertebrate density in Lake Winnipeg. Based on these findings, Lake Winnipeg freshwater drum continue to feed predominantly on insect larvae and not zebra mussels.  相似文献   

4.
Lake Erie has the longest history of colonization by both Dreissena polymorpha and Dreissena rostriformis bugensis in North America and is therefore optimal for the study of long-term dynamics of dreissenid species. In addition, the morphometry of Lake Erie basins varies dramatically from the shallow western to the deep eastern basin, making this waterbody a convenient model to investigate patterns of Dreissena distribution, as well as interspecies interactions among dreissenids. We compare our data on the distribution, density and wet biomass of both dreissenid species in Lake Erie collected in 2009 and 2011–2012 with previous data. We found that Dreissena spp. distribution in Lake Erie varied depending on the time since the initial invasion, collection depth, and lake basin. In 2009–2012, zebra mussels were smaller than in 1992 and were consistently smaller than quagga mussels. During 2009–2012, quagga mussels were found at all depths and in all basins, while zebra mussels were common in the western basin only, and in the central and eastern basins were limited to shallow depths, resulting in an almost complete replacement of D. polymorpha with D. rostriformis bugensis. In the shallowest western basin of Lake Erie, zebra mussels represented > 30% of the combined dreissenid density even after more than 20 years of coexistence, providing strong evidence that, even in lakes as large as Lake Erie (or at least its western basin), D. polymorpha may sustain a significant presence for decades without being displaced by quagga mussels.  相似文献   

5.
The invasion of the Great Lakes by zebra mussels (Dreissena polymorpha) and quagga mussels (Dreissena bugensis) has been accompanied by tremendous ecological change. In this paper we characterize the extent to which dreissenids dominate the nearshore of the Canadian shoreline of Lake Ontario and examine mussel distribution in relation to environmental factors. We surveyed 27 5-m sites and 25 20-m sites in late August 2003. Quagga mussels dominated all sites (mean: 9,404/m2; range 31–24,270), having almost completely replaced zebra mussels. Round gobies (Neogobius melanostomus) were associated with quagga populations dominated by large mussels. Quagga mussel total mass was low at 5-m sites with high upwelling frequency; we believe this is the first documentation of reduced benthic biomass in areas of upwelling in Lake Ontario. Overall, we estimated 6.32×1012 quagga mussels weighing 8.13×1011 g dry weight and carpeting ∼66% of the nearshore benthic habitat. Quagga mussels are a dominant and defining feature of the Lake Ontario nearshore, and must be accounted for in management planning.  相似文献   

6.
Distribution and density of two introduced dreissenid species of mollusks, the zebra mussel Dreissena polymorpha and quagga mussel D. bugensis, were monitored in the Inner Bay at Long Point, Lake Erie, 1991–1995. Since populations of certain waterfowl species have been reported to alter their dietary intake and migration patterns in response to the ready availability of zebra mussels, the percent occurrence of zebra mussels in the diet of 12 duck species (552 birds) was studied concurrently, and several spring and fall aerial waterfowl surveys were flown between 1986 and 1997 (n = 75), to document changes in duck populations at Long Point. The first reproductive population of zebra mussels on the bay most likely appeared in 1990. After an initial rapid increase in density and colonization of the Inner Bay, zebra mussels began to steadily and consistently decline in absolute numbers, density per station and occupied area. Mean density per station in 1995 was 70% less than in 1991, the first year of rapid colonization, and 67% less than in 1992, the year of peak abundance in the bay (P < 0.05). Occupied area peaked in 1992, with 80% of sampling stations supporting mussels; the following 3 years showed consistent declines in the proportion of stations supporting mussels: 1993 = 75.9%, 1994 = 63.2% and 1995 = 57.1% (P < 0.05). Mussels in size class 0 to 5 mm were most abundant in 1991, 1993 and 1995, whereas those in size class 6 to 10 mm predominated in 1992 and 1994 (P < 0.05). Very few mussels over 15 mm were found. Lesser Scaup Aythya affinis (75.4 to 82.5 % occurrence), Greater Scaup A. marila (66.7 to 81.5 % occurrence), and Bufflehead Bucephala albeola (46.7 to 60 % occurrence) were the only three waterfowl species that consistently incorporated zebra mussels in their diet, and the mussel decline coincided with a substantial increase in the populations of these species at Long Point. Waterfowl days for Lesser and Greater Scaup combined increased rapidly from 38,500 in 1986 (prior to the zebra mussel colonization of Long Point) to 3.5 million in 1997 (P = 0.012). Bufflehead days increased from 4,700 to 67,000 during the same period (P = 0.001). Oligotrophication of Lake Erie, through reduced plankton and chlorophyll concentrations, has occurred since the invasion of zebra mussels, probably a result of filtering activities of introduced mussels. While a reduction in plankton availability may have contributed to the zebra mussel decline, high rates of waterfowl predation probably had the most substantial effect on mussel densities at Long Point. Waterfowl predation also probably influenced the size structure of the zebra mussel population, since waterfowl are size-selective foragers, and increased water clarity would have facilitated their ability to select preferred medium and large size classes of mussels. Quagga mussels, which were first detected in 1993, experienced a decline in both density and area occupied over the next two years. Quagga mussels rarely attached to soft substrates, and their decline is possibly related to the decline of suitable hard substrates, such as zebra mussels, as well as to predation by waterfowl.  相似文献   

7.
We studied the impact of round gobies (Neogobius melanostomus) on lithophilic invertebrates (having an association with a stony substrate) across an invasion front along the Door Peninsula, which flanks eastern Green Bay, Lake Michigan. We conducted both a cross-invasion front field survey and a rock-transfer experiment. For the field survey, we collected pairs of rocks from ten sites, including sites north of the invasion front and south of the invasion front. Zebra mussels (Dreissena polymorpha), quagga mussels (D. bugensis), and non-mussel invertebrates were removed from the rocks and enumerated. The rocks were measured and the algae removed and weighed. Round gobies were censused by videotaping along transects. There was a statistically significant negative relationship with round goby abundance for most invertebrates, including zebra mussels, quagga mussels, isopods, and snails, with the result for amphipods being suggestive. For the experiment, we transferred 20 rocks in bags from a round goby “absent” site with 10 going to a round goby abundant site and 10 being returned to the original site. The rocks incubated overnight, invertebrates were removed the next day, and the rocks were measured. There were significantly fewer zebra mussels, quagga mussels, isopods, amphipods, and snails from the rocks incubated at the round goby abundant site compared to those returned to the round gobyfree site. Thus, the results of the survey and rock-transfer experiment suggest that round gobies are influencing the benthic macroinvertebrate abundance through predation. The negative impact on mussels is probably due to direct predation while the negative impact on the other invertebrates may be a combination of direct predation and indirect effects due to the loss of the microhabitat or food that zebra mussels produce.  相似文献   

8.
The zebra mussel, Dreissena polymorpha, is widespread in the St. Lawrence River while the conspecific quagga mussel, Dreissena bugensis, is found only in the Lake Ontario outflow region of the river. This situation provided an opportunity to evaluate in situ environmental and interspecific heterogeneity in shell and tissue growth. Shell dry weight, carbon content, and shell strength of D. polymorpha from the four spatially discrete water masses differed significantly. For instance, D. polymorpha total and tissue mass increased over the summer in the shallow fluvial Lac Saint-Pierre but decreased in the upstream and downstream water masses. Standardized shell mass and strength of D. polymorpha was lowest where the mussels experienced salinity or low calcium. Although the response pattern of mass and glycogen content for D. polymorpha was spatially complex, mussels from the stressful oligohaline estuary population had the weakest shells and lowest glycogen content, even though their standardized tissue mass was the heaviest. This disparity in shell and tissue response suggests that some aspect of shell physiology alone may be limiting these mussels in estuarine environments. Tissue characteristics of D. polymorpha and D. bugensis were similar at the site where both were present, but the shell strength of D. bugensis was only equivalent to the weakest of D. polymorpha. We also conclude that lighter shells might make D. bugensis more susceptible to predation or mechanical damage but may also offer a bioenergetic advantage that is contributing to its rapid displacement of D. polymorpha where the two species co-occur.  相似文献   

9.
The effects of the zebra mussel, Dreissena polymorpha, on chlorophyll and nutrient concentration changes and community ammonium uptake and regeneration rates were determined in bottle experiments on waters collected from a eutrophic site and an oligotrophic site in Saginaw Bay, Lake Huron in 1992. Our objectives were to estimate nitrogen cycling rates and to determine the direct (excretion) and indirect (foodweb) effects of the zebra mussel on these rates. Isotope labeling experiments with added 15NH4+ were conducted on waters collected on five sampling dates between April and October. Direct effects of zebra mussels on ammonium regeneration and potential uptake were examined by comparing results from bottles incubated with (15 individuals in 4 L lake water) and without added zebra mussels. Indirect foodweb effects were examined by measuring regeneration and potential uptake rates in subsamples of water that had previously been incubated in the presence or absence of zebra mussels.Zebra mussels removed a large fraction of chlorophyll from the oligotrophic site on all sampling dates and from the eutrophic site in October, but had a negligible effect on chlorophyll levels in waters from the eutrophic site in June, July, August, and September when cyanophytes were abundant. Community ammonium regeneration rates and uptake rates both followed seasonal patterns resembling those for chlorophyll concentrations in control treatments at the eutrophic site. Rates for water from the oligotrophic site were low (usually not significantly different from zero) and are not reported here. Community ammonium regeneration rates were consistently enhanced in the presence of zebra mussels, indicating that zebra mussel excretion could have a dominant effect on nitrogen regeneration in regions where it is abundant. Zebra mussels appeared to decrease community uptake rates of ammonium in August and September but did not predictably affect nitrogen remineralization rates by other lower foodweb organisms (e.g. bacteria, protozoans, zooplankton).  相似文献   

10.
Direct effects of the grazing activities of the zebra mussel, Dreissena polymorpha, on the natural assemblage of planktonic protozoa and algae from Saginaw Bay, Lake Huron, were studied in September and October 1994. Water and mussels collected from two eutrophic sites were incubated in an outdoor “natural light” incubator at ambient temperature for 24 hours. Experiments were conducted in 4-L bottles with screened (40 or 53-μm net) or unscreened water and with and without mussels. Despite relatively high growth rates of protozoa on both dates, mussels lowered protozoan numbers by 70–80% and reduced the species richness of the protozoan community by 30–50%. Large heterotrophic flagellates were reduced up to 100% while peritrichous ciliates attached to the colonies of blue-greens were reduced only by 50%. Dreissena selectively removed nanoplanktonic Cryptomonas and Cyclotella, but had no significant effect on the predominant phytoplankton species, Microcystis. Overall, Dreissena clearance rates were low in the presence of this cyanophyte species. We conclude that zebra mussels, in regions where they are abundant, can cause significant changes in composition of both the protozoan and phytoplankton communities.  相似文献   

11.
The zebra mussel (Dreissena polymorpha) was utilized to assess the spatial distribution of three trace metals, cadmium, copper, and zinc, in the upper St. Lawrence River and to test the hypothesis that outflow from Lake Ontario influenced levels of these metals in near-shore biota. Zebra mussels, collected from twelve sites along the southern shore, were analyzed for total cadmium, copper, and zinc in their soft tissues. Total cadmium and copper concentrations were elevated at all sites compared to relatively uncontaminated waters and were highest at sites near the outflow of Lake Ontario and an industrial area farthest downstream. Total zinc concentrations approached levels found at uncontaminated sites. Concentrations were rarely related to animal size at any site. However, body burdens (metal content per individual) showed strong positive relationships with size. To facilitate comparisons among sites, body burdens were calculated for standard length (2.0 cm) mussels. Highest body burdens occurred at the outflow of the lake and at one relatively uncontaminated site downstream. Lowest body burdens occurred at sites in the industrial area, although concentrations in the tissues were high. Expected total cadmium concentrations in tissues were estimated using a bio-energetic based kinetic model. Observed cadmium concentrations were lower than predicted, suggesting that near-shore areas may comprise significant depositional areas subject to enrichment with contaminants carried in the outflow from Lake Ontario. Long-term studies of inter-annual variability in metal concentrations, metal burdens, and growth rates should enhance the usefulness of D. polymorpha as a biomonitor and help in understanding the fate of trace metals in the upper St. Lawrence River.  相似文献   

12.
In many aquatic ecosystems benthic invertebrate abundance has increased following zebra mussel (Dreissena polymorpha) invasion. We examine the impact of zebra mussel density on the abundance and distribution of benthic invertebrates and postulate refuge from predation as a mechanism for the increases we found in some taxa. Benthic invertebrates in zebra mussel druses and in adjacent sediment samples were surveyed at sites in six locations representing various trophic conditions in lower Green Bay. Mean invertebrate density and taxa richness were significantly higher in the druses than in the adjacent sediment. Species diversity in the druses was inversely correlated to turbidity over the study area. Sediment samples were dominated by oligochaetes and chironomids. Amphipods were the most abundant taxa in most, but not all, of the druse samples. Other taxa present included leeches, hydra, mayflies, and caddisflies. The effectiveness of druses as refuge from predation for amphipods was investigated under laboratory conditions with various predators (perch, round goby, and rusty crayfish). In mesocosms, predation losses averaged 75% lower where zebra mussels were present. In the absence of mussels, predation loss to perch and round goby was 100% and 66% to crayfish. We conclude that the increased abundance of other invertebrates in druses in lower Green Bay may be due to increased refugia, however the assemblage composition at any given site varies with local conditions.  相似文献   

13.
Populations of the benthic amphipod Diporeia spp. have sharply declined since the early 1990s in all North America's Great Lakes except Lake Superior. The onset and continued decline coincides with the invasion of these lakes by zebra (Dreissena polymorpha) and quagga (Dreissena rostriformis bugensis) mussels and the spread of quagga mussels to deep habitats. The six deepest Finger Lakes of central New York (Seneca, Cayuga, Skaneateles, Canandaigua, Keuka, and Owasco) have historically been Diporeia habitat and have had dreissenids for more than a decade. These lakes represent a wide range of trophic state, maximum depth, and dreissenid invasion history. We hypothesized that Diporeia abundance would be negatively impacted by dreissenid mussel expansion in the Finger Lakes. During 2006–2010, we sampled Diporeia and mussel populations in these six lakes. Diporeia was present in all six lakes, and was abundant (2000/m2) in Owasco Lake that has only zebra mussels and in Cayuga and Seneca Lakes that have had zebra and quagga mussels since 1994. Diporeia abundance was lowest (1000/m2) in Skaneateles, Canandaigua, and Keuka Lakes where quagga mussels have recently expanded. Productivity indicators explained much of the variability of Diporeia abundance. The persistence of Diporeia with quagga mussels in these lakes may be because of available alternative food resources. Fatty acid tracers indicate that Diporeia from Owasco Lake, the lake without quagga mussels, utilize diatoms, but Diporeia from Cayuga Lake that coexist with abundant quagga mussels also use food resources associated with terrestrial detritus that cannot be intercepted by dreissenids.  相似文献   

14.
We examined the short-term effects of zebra mussels (Dreissena polymorpha) on ecosystem processes in late August 1991 in Saginaw Bay, Lake Huron. Four 1,600-L enclosures, made of Fabreen with a diameter of 1 m, a depth of 2 m, and closed at the bottom, were used to enclose natural plankton communities. These communities were dominated by diatoms with some chlorophytes, chrysophytes, and cyanophytes. Phytoplankton growth was limited by P-availability. Two enclosures were held as controls, and zebra mussels encrusting unionid shells were suspended in two of the enclosures: one enclosure (HZ) contained approximately four-fold greater numbers of mussels than the other (LZ). The concentration of suspended particles, chlorophyll, and algal biomass in HZ and LZ declined over a 6-day interval. Diatom numbers declined more than other taxa. Phytoplankton growth rates in HZ and LZ increased to near μmax; there was no apparent change in photosynthetic parameters a or Pmax scaled for chlorophyll. Soluble reactive P (SRP) increased significantly (p < 0.05) in HZ but not LZ. Dissolved organic P (DOP) and ammonium ion were elevated; dissolved organic carbon (DOC) was unchanged in HZ and LZ. The rate of phosphate uptake by bacteria and algae declined to less than 2% of controls; this rate decrease could not be explained simply by grazing losses or isotope dilution. The rate of ammonium regeneration by the plankton and the potential rate of ammonium uptake by the plankton did not differ significantly in HZ or LZfrom the control enclosures. Our findings indicate that the zebra mussel can have significant short-term effects on phytoplankton abundance, water transparency, water chemistry and phosphorus dynamics. We propose a model of zebra mussel effects that suggests high densities of zebra mussels may indirectly alter and control those processes that are rate-limited or concentration-limited by nutrient availability.  相似文献   

15.
We show that the invasion of round gobies (Apollonia melanostoma) in Green Bay, Lake Michigan, has changed the benthic food web in fundamental ways related to their impact on invasive dreissenid mussels. Dreissenid mussels are of specific interest because they are one of the primary dietary items for round gobies. In this study, we collected rocks from each of 10 study sites along approximately 60 km of the eastern shoreline of Green Bay, Lake Michigan, to assess a temporal change in macroinvertebrate abundance related to the northward movement of the round goby invasion front from a point about midway along the shoreline in 2003 to the entire coast in 2006. The pattern of macroinvertebrate abundance in 2003 suggested that round gobies had already caused significant decreases in macroinvertebrate abundances south of the invasion front (interpretation of the data could have been compromised by confounding environmental gradients). In subsequent sampling in 2006 macroinvertebrates were picked off of sampled rocks in the field and underwater transects were videotaped to estimate round goby abundance at each site. Round gobies were collected for stomach analysis to assist in determining which invertebrates would likely be impacted by goby predation. Our results indicated that by 2006, round gobies had become abundant at those sites where they were absent in 2003 and zebra mussels (Dreissena polymorpha), quagga mussels (Dreissena bugensis), isopods, amphipods, trichopterans, and gastropods in the newly invaded sites had significantly decreased at the newly invaded sites.  相似文献   

16.
Quagga and zebra mussels (Dreissena bugensis and D. polymorpha) are spreading across lakes in Europe and North America. In particular, quagga mussels colonize lakes to great depths (>200 m). To better understand the colonization pattern of quagga mussels in deep lakes, we studied the settlement of quagga mussels along a depth gradient on colonization plates at multiple depths (1–140 m) in the pelagic zone of two recently invaded perialpine lakes, Lake Constance and Lake Geneva. We measured colonization rates every three months over one year on colonization plates deployed in both lakes at defined depths. We also assessed long-term population dynamics from abundance and size distribution using repeated photogrammetry of colonization plates. Highest colonization rates and largest mussel sizes occurred above 8 m depth, and almost no zebra mussels were found. Colonization rates decreased to almost zero below 30 m. Colonization rates on plates were associated with variation in environmental conditions as well as veliger densities in the plankton across season and depth. Temperature was the most important environmental parameter that influenced colonization. Our results will help to better understand the seasonal colonization patterns of invasive quagga mussels in deep lakes.  相似文献   

17.
We examined patterns in Lake Champlain zooplankton abundance from 1992 to 2010 using summer data from five study sites. Rotifer abundance (#/m3) for many common taxa such as Polyarthra, Kellicottia, and Keratella declined lakewide in the mid-1990s which coincided with the invasion of zebra mussels (Dreissena polymorpha) into Lake Champlain. The only rotifer to increase in density following zebra mussel invasion was Conochilus which is a colonial species. Long-term shifts in copepod and cladoceran community composition can be attributed to the arrival of another invasive species in 2004–2005, the alewife (Alosa pseudoharengus). Our results support previous findings that alewife predation can impact larger bodied zooplankton within temperate lake systems. Following alewife invasion into Lake Champlain, body length of Leptodiaptomus and Daphnia retrocurva decreased to a size at or below known alewife feeding preferences. In addition, smaller bodied copepods (primarily Diacyclops thomasi) have increased in abundance since alewife invasion while juvenile copepods have declined. Our results suggest that post-alewife zooplankton patterns are most likely due to alewife size-selective feeding strategies. Observed long-term changes in zooplankton community structure have potential implications for the lake's food web dynamics, particularly recent declines in large bodied zooplankton which may release smaller plankton from top-down control.  相似文献   

18.
Field evidence suggests a shift in the dreissenid population from zebra (Dreissena polymorpha) to quagga (D. bugensis) mussels is occurring within the lower Great Lakes. This laboratory study directly compared per-mussel and per-dry-weight filtration rates (volume per time) of both species, gauged by the clearance of resuspended natural sediments (1 to 12 mg/L) from gently mixed, 1-L static vessels. Mussels of 15- and 20-mm lengths were collected together from the Lake Ontario drainage basin at Oak Orchard Creek, Medina, NY, and maintained and tested in ambient Niagara River water. A 2 × 4 factorial design was employed, with species and season as independent factors. Season significantly influenced filtration rate of both size classes, and winter rates were about half those measured during the rest of the year. Species significantly influenced filtration of 20-mm mussels. Quagga mussels of this size filtered up to 37% faster than zebra mussels (data for spring: 309 vs. 226 mL/h/mussel, n = 18 and 20 individuals, respectively). Species was not a significant factor alone for 15-mm mussels, but a species x season interaction was significant. The zebra mussels employed here had 16 to 22% more ash-free dry weight (AFDW) than the quagga mussels, accentuating filtration differences when expressed per-mg-AFDW.  相似文献   

19.
Zebra mussel (Dreissena polymorpha [Pallas]) density was surveyed at 12 stations in Lake St. Clair in September 2001. Lake-wide mean density was 1,824 individuals/m2; whole wet biomass was 148 g/m2; and dry tissue biomass was 1.23 g/m2. Compared to historical data, density did not change significantly, whereas biomass showed a significant downward trend. Our data support the assertion that the zebra mussel population in Lake St. Clair has undergone important changes since the mid-1990s. Some areas of the lake are now juvenile-dominated, others are adult-dominated, and some have a balanced size distribution. These data are consistent with the hypothesis that zebra mussels have changed the lake ecosystem in two ways that have contributed to their own population limits in a density-dependent manner. First is the reduction of adult microhabitat due to the elimination of native mussels from the lake proper. Second is the massive redirection of larval settlement onto a greatly expanded aquatic macrophyte community which senesces and dies at the end of each season, thus decreasing survivorship of juvenile D. polymorpha. If sustained, these recent changes, especially biomass reduction, suggest that the impact of dreissenids on the Lake St. Clair ecosystem will be more moderate in the future.  相似文献   

20.
Between 1991 and 1993, Saginaw Bay experienced an invasion by zebra mussels, Dreissena polymorpha, which caused a significant perturbation to the ecosystem. Blooms of Microcystis, a toxin-producing blue-green alga, became re-established in the bay after the zebra mussel invasion. Microcystis blooms had all but been eliminated in the early 1980s with controls on external phosphorus loadings, but have re-occurred in the bay most summers since 1992. An apparent paradox is that these recent Microcystis blooms have not been accompanied by increases in external phosphorus loadings. An ecosystem model was used to investigate whether the re-occurrence of Microcystis could be due to changes caused by zebra mussels that impacted phytoplankton community structure and/or internal phosphorus dynamics. The model was first used to establish baseline conditions in Saginaw Bay for 1991, before zebra mussels significantly impacted the system. The baseline model was then used to investigate: (1) the composite impacts of zebra mussels with average 1991–1995 densities; (2) sensitivity to changes in zebra mussel densities and external phosphorus loadings; and (3) three hypotheses on potential causative factors for proliferation of blue-green algae. Under the model assumptions, selective rejection of blue-green algae by zebra mussels appears to be a necessary factor in the enhancement of blue-green production in the presence of zebra mussels. Enhancement also appears to depend on the increased sediment-water phosphorus flux associated with the presence of zebra mussels, the magnitude of zebra mussel densities, and the distribution of zebra mussel densities among different age groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号