首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
We describe the structure of biodegradable chitosan-nanohydroxyapatite (nHA) composites scaffolds and their interaction with pre-osteoblasts for bone tissue engineering. The scaffolds were fabricated via freezing and lyophilization. The nanocomposite scaffolds were characterized by a highly porous structure and pore size of ∼50–125 μm, irrespective of nHA content. The observed significant enhancement in the biological response of pre-osteoblast on nanocomposite scaffolds expressed in terms of cell attachment, proliferation, and widespread morphology in relation to pure chitosan points toward their potential use as scaffold material for bone regeneration.  相似文献   

2.
表面生物活性涂层构建是提升金属内植物骨整合能力的有效途径,本研究利用电化学沉积技术在多孔钽支架表面构建生物活性羟基磷灰石(HA)涂层。通过接触角和比表面积测试发现,HA涂层的构建显著提升了多孔钽表面亲水性,并增加了其比表面积。利用模拟体液浸泡试验评估支架生物活性,发现仅浸泡3天后,多孔钽支架表面就已被类骨磷灰石沉积所覆盖。建成骨细胞培养模型,通过激光共聚焦观察及细胞增殖测试发现,所有支架均具有良好的细胞相容性。并且,细胞共培养5天后,HA涂层化多孔钽支架表面细胞的增殖率分别是未改性材料组和空白对照组的1.1和1.4倍,呈现了更大的促细胞增殖潜力。本研究中所制备的生物活性多孔钽支架具备快速诱导类骨磷灰石沉积能力,能够促进成骨细胞在其表面的贴附和增殖,在骨修复领域具有较大的临床应用前景。  相似文献   

3.
Porous hydroxyapatite(HA)–tricalcium phosphate(TCP) ceramic scaffolds were prepared using a screw-type extrusion method with polymer beads. HA and dicalcium phosphate dehydrates(DCPD) were added at various ratios to obtain different HA/TCP ratios in sintered ceramic scaffolds. To further enhance the pore interconnectivity and porosity,the developed porous ceramic scaffolds were etched with acid solutions. The maximum porosity(~85%) was observed in the Ca-P scaffold with the lowest HA(~7%) content. On the other hand, the maximum compressive strength was noted in the scaffolds with the highest HA content(~85%). X-ray diffraction showed that the extent of the b-TCP to a-TCP phase transformation increased with decreasing HA/DCPD ratio. All HCl-etched scaffolds were observed to generate micropores,which improved the interconnectivity, while biomineralization was found to be the same for both the HCl-etched and nonetched scaffolds. In particular, hydrochloric acid etching is a promising method for improving the interconnectivity and porosity of the ceramic scaffolds.  相似文献   

4.
Porous titanium scaffold with suitable porous architecture exhibits enormous potentials for bone defect repairs. However,insufficient osteointegration and osteoinduction still remain to open as one of the major problems to achieve satisfactory therapeutic effect. To solve this problem, many studies have been carried out to improve the bioactivity of porous titanium scaff old by surface modifications. In this study, porous Ti6Al4V scaff olds were fabricated using additive manufacturing technique. Porous architectures were built up based on a diamond pore structure unit. Alkali–acid-heat(AH) treatment was applied to create a TiO_2 layer on the porous Ti6Al4V scaff old(AH-porous Ti6Al4V). Subsequently, a hydrothermal treatment was employed to enable the formation of HA coating with nanopillar-like morphology on the alkali–acid-heat-treated surface(HT/AH-porous Ti6Al4V). The effects of surface modifications on apatite-forming ability, protein adsorption,cell attachment, cell proliferation and osteogenic gene expression were studied using apatite-forming ability test, protein adsorption assay and in vitro cell culture assay. It was found that the HT/AH-porous Ti6Al4V exhibited the highest apatite formation ability and best affinity to fibronectin and vitronectin. In vitro studies indicated that the mesenchymal stem cells(MSCs) cultured on the HT/AH-porous Ti6Al4V presented improved adhesion and differentiation compared with the porous Ti6Al4V and AH-porous Ti6Al4V.  相似文献   

5.
In this study, microhydroxyapatite and nanosilica sol were used as the raw materials for fabrication of bioceramic bone scaffold using selective laser sintering technology in a self-developed 3D Printing apparatus. When the fluidity of ceramic slurry is matched with suitable laser processing parameters, a controlled pore size of porous bone scaffold can be fabricated under a lower laser energy. Results shown that the fabricated scaffolds have a bending strength of 14.1 MPa, a compressive strength of 24 MPa, a surface roughness of 725 nm, a pore size of 750 μm, an apparent porosity of 32%, and a optical density of 1.8. Results indicate that the mechanical strength of the scaffold can be improved after heat treatment at 1200 °C for 2 h, while simultaneously increasing surface roughness conducive to osteoprogenitor cell adhesion. MTT method and SEM observations confirmed that bone scaffolds fabricated under the optimal manufacturing process possess suitable biocompatibility and mechanical properties, allowing smooth adhesion and proliferation of osteoblast-like cells. Therefore, they have great potential for development in the field of tissue engineering.  相似文献   

6.
雷波  马晓龙 《稀有金属快报》2013,(10):583-590,630
人口老龄化,疾病以及交通事故等造成大量的人体骨组织损伤和丢失。如何实现骨组织缺损的快速修复与再生成为临床医学研究的重要课题和目标,而生物医用材料在其中发挥着极其重要的作用。目前临床上常用的骨组织修复材料如自体骨、异体骨、合成材料(金属,陶瓷,高分子)等都存在各种各样的问题,无法实现大规模的应用和骨组织的快速有效再生。而骨组织工程学科研究多孔支架结合细胞和生长因子来实现骨组织再生,以鳃决骨科临床面临的问题为目的。最近十多年来,三维纳米纤维支架由于可以仿天然细胞外基质的结构和形态而显示出较强的促进细胞增殖、成骨分化以及骨组织修复再生的能力。主要综述具有仿生的纳米纤维及其复合支架材料的制备技术以及他们在增强细胞功能、干细胞成骨分化、及其骨组织再生中的应用。  相似文献   

7.
Porous Mg-based scaffolds have been extensively researched as biodegradable implants due to their attractive biological and excellent mechanical properties. In this study, porous Mg-6 wt.% Zn scaffolds were prepared by powder metallurgy using ammonium bicarbonate particles as space-holder particles. The effects of space-holder particle content on the microstructure, mechanical properties and corrosion resistance of the Mg-6 wt.% Zn scaffolds were studied. The mean porosity and pore size of the open-cellular scaffolds were within the range 6.7-52.2% and 32.3-384.2 µm, respectively. Slight oxidation was observed at the grain boundaries and on the pore walls. The Mg-6 wt.% Zn scaffolds were shown to possess mechanical properties comparable with those of natural bone and had variable in vitro degradation rates. Increased content of space-holder particles negatively affected the mechanical behavior and corrosion resistance of the Mg-6 wt.% Zn scaffolds, especially when higher than 20%. These results suggest that porous Mg-6 wt.% Zn scaffolds are promising materials for application in bone tissue engineering.  相似文献   

8.
铁基可降解金属因其良好的生物相容性和优异的机械性能,在骨科植入物领域具有广阔的应用前景,但必须突破其降解速率过慢的瓶颈问题。本研究通过电化学技术对3D打印多孔铁锰合金(Fe-30Mn)支架表面进行去合金化处理。通过扫描电镜观察发现,以盐酸和氯化钠分别作为去合金化处理介质溶液,可以在支架表面形成多微孔网络结构和片状纳米结构。接触角和粗糙度测试显示,两种微纳结构的构建均显著改善了Fe-30Mn支架表面亲水性,并提升了其表面粗糙度,多微孔网络结构更加粗糙并且亲水性更好。利用静态浸泡法和电化学耐腐蚀实验评估合金化处理前后支架的腐蚀速率,发现表面微纳结构的形成可加速Fe-30Mn支架的降解。建立体外成骨细胞培养模型,通过激光共聚焦观察及细胞增殖测试发现,经合金化处理的两种支架均能支撑细胞的贴附和增殖,具有良好的细胞相容性。本研究结果表明,经电化学去合金化处理后,Fe-30Mn支架的降解速度得以增强,同时保持了良好的生物相容性,有望在骨修复领域得到较好应用。  相似文献   

9.
龚明明  谭丽丽  耿芳  杨柯 《金属学报》2008,44(2):237-242
利用有限元方法建立了激光打孔制备的直孔型多孔镁样品的压缩模型,系统分析了孔隙率、孔径及孔的排布对多孔镁样品压缩性能的影响,初步探讨了多孔镁在压缩过程中的变形规律.模拟计算结果表明,随着孔隙率、孔径的增加和孔的排布角的减小,多孔镁压缩曲线下移,屈服强度和弹性模量随之下降;多孔镁的压缩变形规律符合金属的最小阻力定律.  相似文献   

10.
There is a significant unmet clinical need for modular and customized porous biodegradable constructs (scaffolds) for non-union large bone loss injuries. This paper proposes modelling and biomanufacturing of modular and customizable porous constructs for patient-specific critical bone defects. A computational geometry-based algorithm was developed to model modular porous constructs using a parametric femur model based on the frequency of common injuries. The generated modular constructs are used to generate biomimetic path planning for three-dimensional (3D) printing of modular scaffold pieces. The developed method can be used for regenerating bone tissue for treating non-union large bone defects.  相似文献   

11.
Bone scaffolds provide a structural support for tissue development. Existing bone scaffolds are mainly characterized by complex porous designs whose shortcomings are a low level of permeability for growing tissue, and a difficult design customization. Scaffolds with nucleuses (rods or lattices) as basic elements should improve bone regeneration and enable higher design flexibility. In this paper, we present two new methods for building 3D geometrical models of personalized scaffolds, which are based on method of anatomical features. Methods are demonstrated in the case of scaffold for the mandible bone. This approach greatly reduces the designer effort and time, while enabling easy personalization of scaffolds’ shape and geometry.  相似文献   

12.
针对目前骨组织工程支架微孔结构难以准确设计制备的问题,提出了一种基于点云的参数化建模+3D打印新方法。通过提取cube(C)、diamond(D)、gyroid(G)3种结构的型面函数点云数据,完成对不同孔结构特征的参数化建模。通过对模型有限元力学分析,对不同孔结构特征的多孔钛骨组织支架进行力学设计与订制。借助激光选区熔融(SLM)3D打印技术,完成对不同孔特征的骨组织支架快速成型。对多孔钛骨组织支架进行了相关材料学表征,包括孔结构表征与力学性能测试。结果表明:参数化模型的快速成型制造,能够有效地设计制备钛合金骨组织工程支架的孔结构特性,且可有效设计订制支架的力学性能,从仿生的角度实现多孔钛合金骨组织工程支架生物学功能的设计优化。  相似文献   

13.
钽金属是一种理想的医用金属材料,能够与人体软/硬组织发生整合。利用化学气相沉积方法,在可控多孔结构的Ti6Al4V合金支架表面沉积涂覆钽金属涂层,使其同时具备理想的三维孔隙结构和力学相容性,以及钽金属优异的生物学性能。研究结果显示,多孔钛合金支架表面涂层前后色泽发生明显变化,涂层后支架呈现钽金属色泽。扫描电镜和XRD分析进一步证明了多孔钛合金支架表面沉积物为钽金属。与美国Zimmer公司生产的多孔钽小梁金属相比,钽涂层多孔钛合金支架具备与人体皮质骨更相似的弹性模量和抗压强度,是一种理想的骨修复替代物。  相似文献   

14.
Magnesium and calcium phosphates composites are promising biomaterials to create biodegradable load-bearing implants for bone regeneration.The present investigation is focused on the design of an interpenetrated magnesiumtricalcium phosphate(Mg-TCP) composite and its evaluation under immersion test.In the study,TCP porous preforms were fabricated by robocasting to have a prefect control of porosity and pore size and later infiltrated with pure commercial Mg through current-assisted metal infiltration(CAMI) technique.The microstructure,composition,distribution of phases and degradation of the composite under physiological simulated conditions were analysed by scanning electron microscopy,elemental chemical analysis and X-ray diffraction.The results revealed that robocast TCP preforms were full infiltrated by magnesium through CAMI,even small pores below 2 um have been filled with Mg,giving to the composite a good interpenetration.The degradation rate of the Mg-TCP composite displays lower value compared to the one of pure Mg during the first 24 h of immersion test.  相似文献   

15.
《CIRP Annals》2020,69(1):217-220
Scaffolds play an important role as physical substrates for cell proliferation and differentiation, leading to tissue regeneration. For bone applications, researchers are focusing on cellular or acellular biocompatible biodegradable polymeric scaffolds. However, high biological performance scaffolds are still required to meet actual clinical demands. This paper discusses a novel strategy to engineer the biological performance of polymeric scaffolds through the combined use of additive manufacturing, acetone vapour annealing surface treatment and dopamine grafting, enabling the fabrication of hierarchical nanostructured tissue engineering structures. Produced scaffolds present improved biological behaviour compared to conventional additive manufactured scaffolds, and similar mechanical properties, showing high potential for clinical applications.  相似文献   

16.
A novel antibacterial biomimetic porous titanium implant with good osseointegration was prepared by freeze-casting and thermal oxidation. Bone integration properties of the porous titanium implant were evaluated by cell proliferation assay, alkaline phosphatase activity assay, X-ray examination and hard bone tissue biopsy. The in vitro cell proliferation and the level of differentiation of the group with a modified nano-porous implant surface were significantly higher than those in the group without surface modification and the dense titanium control group (P<0.05). In vivo, bone growth and osteogenesis were found in the experimental groups with modified and unmodified porous titanium implants; osteoblasts in the modified group had more mature differentiation in the pores compared to the unmodified group. Such implants can form solid, biologically compatible bone grafts with bone tissues, exhibiting good osseointegration.  相似文献   

17.
多孔支架是组织工程应用中的关键环节,类似细胞外基质的作用,支撑细胞的粘附和随后细胞向组织的衍化。虽然目前已采用多种制备技术研发出大量的多孔支架,但是多孔生物材料支架的制备和性能优化,仍然是组织工程支架领域的研究热点。结合实验室工作,综述了多种制备不同类型多孔结构生物材料支架的制备技术,主要包括颗粒和纤维堆积型支架、泡沫浸渍法支架和颗粒制孔支架等的制备技术,并阐述了这些制备技术对多孔结构支架的孔结构、贯通性和力学性能的改善效果。其目的旨在提供满足组织工程需求的多孔生物材料支架。  相似文献   

18.
In this study, the macroporous forsterite scaffolds with highly interconnected spherical pores, with sizes ranged from 50 to 200 μm have been successfully fabricated via gelcasting method. The crystallite size of the forsterite scaffolds was measured in the range 26-35 nm. Total porosity of different bodies sintered at different sintering temperatures was calculated in the range 81-86%, while open porosity ranges from 69 to 78%. The maximum values of compressive strength and elastic modulus of the prepared scaffolds were found to be about 2.43 MPa and 182 MPa, respectively, which are close to the lower limit of the compressive strength and elastic modulus of cancellous bone and the compressive strength is equal to the standard for a porous bioceramic bone implant (2.4 MPa). Transmission electron microscopy analyses showed that the particle sizes are smaller than 100 nm. In vitro test in the simulated body fluid proved the good bioactivity of the prepared scaffold. It seems that, the mentioned properties could make the forsterite scaffold appropriate for tissue engineering applications, but cell culture and in vivo tests are needed for more confidence.  相似文献   

19.
通过3D凝胶打印(3DGP)技术制备了高强度和高孔隙率的磷酸三钙(TCP)多孔支架,通过扫描电子显微镜(SEM)观察支架的微观形态,并通过初步的动物实验评估了多孔支架的生物相容性。研究结果表明,适合打印的浆料固含量为34%(体积分数),打印支架在长度、宽度和高度方向上的收缩率分别为11.44%±0.20%,9.41%±0.23%和10.57%±0.20%。当支架在1150 ℃下烧结2 h后,支架的抗压强度为22.6±0.12 MPa,孔隙率约为62.1%。初步的动物植入实验显示多孔TCP支架在兔股骨髁缺损处未引起明显的排斥反应,并在骨与支架的连接处未见炎症反应或慢性炎症反应。通过3DGP技术制备的多孔TCP支架具有良好的生物相容性和力学性能,有望满足松质骨的植入要求,为下一步的实验研究打下基础。  相似文献   

20.
多孔镁(Mg)支架有利于生物植入,但是由于Mg的高活性,植入后降解速度过快,不利于新骨的形成。为了有效地控制镁支架的降解,研究了3种不同表面涂层对多孔镁支架的影响。通过能量色散光谱仪(EDS),X射线衍射(XRD)和红外傅里叶变换光谱(FTIR)证实支架表面的组成为纯Mg,氧化镁(MgO),磷酸氢钙(DCPD)和硬脂酸(SA)。结果表明,从表面形貌可以看出,SA涂层更光滑,更致密。模拟体液(SBF)的体外降解实验表明,与未涂覆的Mg支架相比,表面涂层可以有效地减慢支架的降解,并且DCPD涂层和SA涂层优于MgO涂层。在第15周时,浸泡在SBF中的DCPD和SA涂层支架的降解率为70%,这可以为新骨的生长提供一定的时间。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号