首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The current paper focuses on several mechanical aspects of a waferlevel packaging approach using a direct face-to-face Chip-to-Wafer (C2W) bonding of a MEMS device on an ASIC substrate wafer. Requirements of minimized inherent stress from packaging and good decoupling from forces applied in manufacturing and application are discussed with particular attention to the presence of through-silicon vias (TSV) in the substrate wafer. The paper deals with FEM analysis of temperature excursion, pressure during molding, materials used and handling load influence on mechanical stress within the TSV system and on wafer level, which can be large enough to disintegrate the system.  相似文献   

2.
We have developed a microphone package using flip chip technology instead of chip and wire bonding to create smaller MEMS microphones. With this new packaging technology the transducer chip and an ASIC chip are flip chip bonded on a ceramic substrate. The package is sealed by a polymer foil laminated over the chips and by a metal layer. The sound port is on the bottom side in the ceramic substrate. In this paper the packaging technology is explained in detail and results of electro-acoustic characterization and reliability testing are presented. We will also explain the way which has led us from the packaging of Surface Acoustic Wave (SAW) components to the packaging of MEMS microphones.  相似文献   

3.
We report here a novel approach called microelectromechanical systems (MEMS) microflex interconnect (MMFI) technology for packaging a new generation of bioMEMS devices that involve movable microelectrodes implanted in brain tissue. MMFI addresses the need for the following: (1) operating space for movable parts and (2) flexible interconnects for mechanical isolation. We fabricated a thin polyimide substrate with embedded bond pads, vias, and conducting traces for the interconnect with a backside dry etch, so that the flexible substrate can act as a thin-film cap for the MEMS package. A double-gold-stud-bump rivet-bonding mechanism was used to form electrical connections to the chip and also to provide a spacing of approximately 15-20 mum for the movable parts. The MMFI approach achieved a chip-scale package that is lightweight and biocompatible and has flexible interconnects and no underfill. Reliability tests demonstrated minimal increases of 0.35, 0.23, and 0.15 mOmega in mean contact resistances under high humidity, thermal cycling, and thermal shock conditions, respectively. High-temperature tests resulted in increases of > 90 and ~ 4.2 mOmega in resistance when aluminum and gold bond pads were used, respectively. The mean time to failure was estimated to be at least one year under physiological conditions. We conclude that MMFI technology is a feasible and reliable approach for packaging and interconnecting bioMEMS devices.  相似文献   

4.
Anuroop  Bansal  Deepak  Kumar  Prem  Kumar  Amit  Khushbu  Rangra  Kamaljit 《Microsystem Technologies》2019,25(8):3047-3051

Packaging is one of the most critical tasks for MEMS devices. Unlike solid state devices, MEMS structures involves moving structures which needs to be protected from outer environment ensuring free movement of the structure. In the present paper, inverted silicon cavity is used for capping the MEMS devices. However, in case of RF MEMS, silicon cavity would add parasitics and affects its electrical performance. Enclosing the MEMS structure, its mechanical response will also alter. The electrical as well as mechanical characteristics of the RF MEMS switch are analyzed using finite element method simulations. The electrical response of the fabricated switch after packaging is compared with unpackaged device.

  相似文献   

5.
Wide range tunable components are a key point for high frequency performances. We have developed a novel RF MEMS rotational capacitor based on surface variation and high displacement. This paper will present multiple designs with physical parameter variations for comparative test with fabricated device measurements. The goal of this work is to prove the proper operation of the devices according to fulfill target performances. The main parameters will be tunability, capacitance value, resonance frequency and finally maximal actuation voltage allowed.  相似文献   

6.
Quite a few MEMS devices such as accelerators, gyroscopes, infrared sensors need to work in vacuum environment to enhance their performance. The traditional vacuum packaging methods use getters to increase vacuum maintaining lifetime. However, the getter's characteristics of high temperature activation, powder pollution, large package size limit its use in MEMS vacuum packaging. This study analyzes the factors that influence the vacuum level, and derived a relationship between the balanced vacuum level, the effective leak rate, and vacuum maintaining lifetime. A novel vacuum package design with vacuum buffer cavity was proposed, the vacuum maintaining lifetime could be increased at least 20 times as compared to the ordinary package with the same volume. Reliability experiments were conducted so as to verify that the new package design can achieve reliable vacuum packaging without getters to meet the requirements of device applications for vacuum with about 0.1 Pa in pressure level. This unique package design also provided a complementary way to work with getters to enhance the vacuum package performance and reliability of hermeticity.  相似文献   

7.
封装热应力是导致MEMS器件失效的主要原因之一,本文设计了一种MEMS高g加速度传感器,并仿真研究了传感器在封装过程中的热应力及影响其大小的因素。根据封装工艺,建立设计的高g加速度传感器封装的有限元模型,利用AN-SYS软件仿真传感器在不同的贴片工艺中受到的热应力及影响热应力的因素。结果显示,在封装中,与直接贴片到管壳底部相比,MEMS高g加速度传感器芯片底面键合高硼硅玻璃后再贴片到管壳底部时,封装热应力可从135MPa降低到33MPa;在贴片工艺中,基板的热膨胀系数和贴片胶的弹性模量、热膨胀系数及厚度是影响封装热应力的主要因素;在健合工艺中,基板和键合温度主要影响到热应力的大小。  相似文献   

8.
MEMS低真空封装技术能为MEMS器件的可动部分提供低阻尼环境,降低能量损耗,有效提高器件的能量转换效率,具有重要的研究意义和应用前景,是MEMS技术的研究热点和难点。为了进一步提高MEMS压电振动能量收集器的输出性能,提出了圆片级低真空封装的共质量块MEMS压电悬臂梁阵列振动能量收集器新结构,通过有限元分析方法对器件结构参数进行了优化设计,在优化结构参数下仿真器件输出性能:在610 Hz、2 gn加速度下,器件的输出电压为8.88 V,输出功率为1220μW,能满足实际应用需求;根据器件结构设计了加工工艺流程,对低真空封装结构的实现和封装工艺探索具有重要意义。  相似文献   

9.
A low-temperature thin-film electroplated metal vacuum package   总被引:1,自引:0,他引:1  
This paper presents a packaging technology that employs an electroplated nickel film to vacuum seal a MEMS structure at the wafer level. The package is fabricated in a low-temperature (<250/spl deg/C) 3-mask process by electroplating a 40-/spl mu/m-thick nickel film over an 8-/spl mu/m sacrificial photoresist that is removed prior to package sealing. A large fluidic access port enables an 800/spl times/800 /spl mu/m package to be released in less than three hours. MEMS device release is performed after the formation of the first level package. The maximum fabrication temperature of 250/spl deg/C represents the lowest temperature ever reported for thin film packages (previous low /spl sim/400/spl deg/C). Implementation of electrical feedthroughs in this process requires no planarization. Several mechanisms, based upon localized melting and Pb/Sn solder bumping, for sealing low fluidic resistance feedthroughs have been investigated. This package has been fabricated with an integrated Pirani gauge to further characterize the different sealing technologies. These gauges have been used to establish the hermeticity of the different sealing technologies and have measured a sealing pressure of /spl sim/1.5 torr. Short-term (/spl sim/several weeks) reliability data is also presented.  相似文献   

10.
11.
In this paper, packaging-induced stress effects are assessed for microelectromechanical systems (MEMS) sensors. A packaged MEMS sensor may experience output signal shift (offset) due to the thermomechanical stresses induced by the plastic packaging assembly processes and external loads applied during subsequent use in the field. Modeling and simulation to minimize the stress-induced offset shift are essential for high-precision accelerometers, gyroscopes, and many other MEMS devices. Improvement of plastic package modeling accuracy is accomplished by correlating finite-element analysis package models using measured material properties and package warpage. Using a refined reduced-order MEMS sensor and package interaction model, device offset is simulated, optimized, and compared with data collected from a unique three-axis accelerometer, which uses a single mass for all three axes sensing. As a result, this accelerometer has achieved very low offset in all axes over device operation temperature range of to . Device offset performance was improved by at least five times after the MEMS design optimization as compared with the one prior to the optimization.  相似文献   

12.
Over the past few years, microelectromechanical system (MEMS) based on-chip resonators have shown significant potential for sensing and high frequency signal processing applications. This is due to their excellent features like small size, large frequency-quality factor product, low power consumption, low cost batch fabrication, and integrability with CMOS IC technology. Radio frequency communication circuits like reference oscillators, filters, and mixers based on such MEMS resonators can be utilized for meeting the increasing count of RF components likely to be demanded by the next generation multi-band/multi-mode wireless devices. MEMS resonators can provide a feasible alternative to the present-day well-established quartz crystal technology that is riddled with major drawbacks like relatively large size, high cost, and low compatibility with IC chips. This article presents a survey of the developments in this field of resonant MEMS structures with detailed enumeration on the various micromechanical resonator types, modes of vibration, equivalent mechanical and electrical models, materials and technologies used for fabrication, and the application of the resonators for implementing oscillators and filters. These are followed by a discussion on the challenges for RF MEMS technology in comparison to quartz crystal technology; like high precision, stability, reliability, need for hermetic packaging etc., which remain to be addressed for enabling the inclusion of micromechanical resonators into tomorrow??s highly integrated communication systems.  相似文献   

13.
This paper presents a chip-level integration of radio-frequency (RF) microelectromechanical systems (MEMS) air-suspended circular spiral on-chip inductors onto MOSIS RF circuit chips of LNA and VCO using a multi-layer UV-LIGA technique including SU-8 UV lithography and copper electroplating. A high frequency simulation package, HFSS, was used to determine the layout of MEMS on-chip inductors with inductance values close to the target inductance values required for the RF circuit chips within the range of 10%. All MEMS on-chip inductors were successfully fabricated using a contrast enhancement method for 50 μm air suspension without any physical deformations. High frequency measurement and modeling of the integrated inductors revealed relatively high quality factors over 10 and self-resonant frequencies more than 15 GHz for a 1.44 nH source inductor and a 3.14 nH drain inductor on low resistivity silicon substrates (0.014 Ω cm). The post-IC integration of RF MEMS on-chip inductors onto RF circuit chips at a chip scale using a multi-layer UV-LIGA technique along with high frequency measurement and modeling demonstrated in this work will open up new avenues with the wider integration feasibility of MEMS on-chip inductors in RF applications for cost-effective prototype applications in small laboratories and businesses.  相似文献   

14.
The SoC paradigm is a system integration approach that integrates large numbers of transistors as well as various mixed-signal active and passive components onto a single chip. This realization-led to the 3D system-in-package (SiP) approach, alternatively called 3D ICs or 3D stacked die/package. Designers can take SiP a step further by embedding both active and passive components, but passive-component embedding is bulky and requires thick-film discrete components. Thick-film component embedding distinguishes SiP from system on package (SoP), an emerging 3D system integration concept that involves embedding both active and passive components. SoP, however, incorporates ultrathin films at microscale to embed the passive components, and the package rather than the board is the system. SoP overcomes both the computing and integration limitations of SoC, SiP, multichip modules (MCMs), and traditional system packaging by having global wiring as well as RF, digital, and optical component integration in the package instead of on the chip. Moreover, 3D SoP addresses the wire delay problem by enabling the replacement of long, slow global interconnects with short, fast vertical routes.  相似文献   

15.
This paper introduces the use of germanium as resistive material in RF MicroElectroMechanical (MEMS) devices. Integrated resistors are indeed highly required into RF MEMS components, in order to prevent any RF signal leakage in the bias lines and also to be compatible with ICs. Germanium material presents strong advantages compared to others. It is widely used in microtechnologies, notably as an important semi-conductor in SiGe transistors as well as sacrificial or structural layers and also mask layer in various processes (Si micromachining especially). But it also presents a very high resistivity value. This property is particularly interesting in the elaboration of integrated resistors for RF components, as it assures miniaturized resistors in total agreement with electromagnetic requirements. Its compatibility as resistive material in MEMS has been carried out. Its integration in an entire MEMS process has been fruitfully achieved and led to the successful demonstration and validation of integrated Ge resistors into serial RF MEMS variable capacitors or switches, without any RF perturbations.  相似文献   

16.
In this paper, a summary of the most relevant failure mechanisms of thin-film vacuum microelectromechanical systems (MEMS) packages and existing testing techniques will be presented. Then, based on analytical models for thin-film vacuum MEMS packages (volume in the order of 10E−11 l), a feasibility study on options for thin-film vacuum MEMS package testing will be presented. This feasibility study leads to new insights and suggestions for future thin-film vacuum MEMS package testing.  相似文献   

17.
A structure for a piezoelectrically actuated capacitive RF MEMS switch that is continuously variable between the ON state and the OFF state has been proposed. The device is based on variable capacitance using a cantilever fixed at both ends that is actuated using a lead zirconate titanate thin film. Because the device is contactless, the reliability issues common in contact-type RF MEMS switches can be avoided. A comprehensive mathematical model has been developed in order to study the performance of the device, and allow for design optimization. Electrical measurements on test structures have been compared with the performance predicted by the model, and the results used to design a prototype RF MEMS switch. The model and simulations indicate the proposed switch structure can provide an insertion loss better than 0.7 dB and an isolation of more than 10 dB between 6 and 14 GHz with an actuation voltage of 22.4 V. The state of the device is continuously variable between the ON state and the OFF state, with a tunable range of capacitance of more than 15\(\times \).  相似文献   

18.
This paper presents a flip-chip based packaging technique for encapsulating MEMS electrostatic actuators for biomedical applications. High-performance electrostatic inchworm actuators are used to demonstrate the packaging technique. A wall structure is put around the actuator surrounding it completely but leaving a small clearance where the actuator shuttle can extend off the edge of the chip. A cap chip is fabricated separately, and flip-chipped onto the actuator. Au–Au thermal bonding technique is used to fix the cap. Finally, rendering the surfaces of the clearance hydrophobic prevents the water ingress when the actuator operates in water.  相似文献   

19.
This paper describes a new universal electromagnetic microactuator that makes use of novel magnetic interconnection concepts. In order to realize the universal actuator, planar microinductors are fabricated on a substrate which already contains anisotropically etched Ni/Fe permalloy-electroplated magnetic vias or through-holes. The inductor, which acts as a flux generator, is physically located on one side of the wafer, but is magnetically connected to the opposite side of the wafer where actuation occurs. This approach to actuator design provides for maximum flexibility in the range of applications. In addition, it allows the actuator to be readily connected to driving circuitry without interfering with the actuating device. Multi-layer 3D inductive components are fabricated using a LIGA-like thick photoresist lithography process. The fabricated coils consist of a horseshoe-shaped permalloy-electroplated magnetic core and electroplated copper conductor lines that form the windings around the core. Initial testing using a prototype cantilever beam structure has proven functionality and indicates that the new device has much potential as a low power magnetic microactuator. Many magnetic MEMS applications require an electromagnetic actuator with high efficiency, and some areas which this device is expected to impact include microfluidics, micromotors, optics, and resonating devices  相似文献   

20.
In this paper, packaging techniques of fiber optical MEMS devices are investigated. A packaging scheme is proposed, which includes the architecture to construct the component package and the major packaging flow to implement it. Passive fiber alignment with the accuracy comparable with active alignment is presented by the combination of rectangular shape fiber grooves and micro fiber stoppers. The experimental setup specific for fiber optic MEMS component is presented for the fiber assembly and the characterization of optical loss. A testing system based on the Labview 6.1 instrument control is also presented, which can facilitate the characterization of switching time for MEMS optical switches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号