首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
目的:通过介孔碳(CMK-3)和聚苯胺(PANI)协同作用,解决硅颗粒的导电性差和体积膨胀问题。方法:采用机械球磨与聚苯胺原位复合制备了Si/CMK-3/PANI复合材料。结果:该材料具有很好的电化学性能,在0.2 A·g~(-1)电流密度下初始充电容量达到3 517 mAh·g~(-1),循环94次后可逆电容量为1 202 mAh·g~(-1);在8 A·g~(-1)电流密度下可逆容量为536 mAh·g~(-1),库伦效率达到97%。结论:微观结构分析显示:硅颗粒分散在CMK-3表面,并包覆聚苯胺从而提升了硅的导电性;而且有效抑制了硅在充放电过程中的体积膨胀,同时聚苯胺包覆还可以有效防止硅颗粒从CMK-3表面脱离。  相似文献   

2.
基于静电喷雾沉积技术制备了硅-纳米炭纤维-石墨烯杂化膜(Si/CNF/G),其中纳米硅颗粒包覆在多孔炭基体中,由纳米硅和多孔炭组成的二次结构被镶嵌在由纳米炭纤维和石墨烯组成的三维交联炭网络中,最终构成无粘结剂的硅/碳复合整体电极。Si/CNF/G三维杂化膜用作锂离子电池电极时,表现高的可逆比容量、长的循环寿命和良好的倍率性能。0.2 A·g~(-1)恒定电流密度下,首次可逆比容量为957mAh·g~(-1),经100圈循环容量保持率为74.4%;2 A·g~(-1)恒定电流密度下,可逆比容量为539mAh·g~(-1)。多孔炭基体可有效缓冲硅的体积变化,促进形成稳定的固态电解质界面;纳米炭纤维和石墨烯构建的三维炭网络既稳定了电极的整体结构,又可为电子和离子提供快速传输通道。  相似文献   

3.
通过对氧化硅预处理得到多组分硅pSi(Si、SiO、SiO_2),再利用化学气相沉积法(CVD)设计了具有核壳结构的pSi与碳纳米纤维(CNF)的复合材料(pSi-CNF)。多组分硅中Si、SiO提供电化学可逆容量,SiO_2可以抑制硅的体积膨胀;碳纳米纤维包覆形成的壳层结构可以有效提高复合材料的导电性,同时进一步抑制硅的体积膨胀保持核壳结构的完整。通过SEM、TEM、EDS、XRD、Raman和XPS对复合物的微观结构进行分析。结果表明:pSi-CNF的粒径为5~20μm,碳纳米纤维的直径为5~40 nm, pSi-CNF复合材料中含有Si、SiO和SiO_2多种组分硅,有明显特征峰;碳纳米纤维均匀包覆于硅表面,形成核壳结构。电化学性能测试表明,在0.2 A·g~(-1)的电流密度下,经100次循环后其可逆容量为1 411 mAh·g~(-1),容量保持率为74%,具有良好的循环稳定性和较高的可逆容量;在1 A·g~(-1)的电流密度下,经300次循环后其可逆容量为735 mAh·g~(-1),容量保持率为86%,且具有良好的倍率性能。  相似文献   

4.
采用超声辅助的水热法及后续热处理法,将硅溶胶、蔗糖、氧化石墨烯自组装制备出具有优异电化学性能的SiO_2@碳-石墨烯(SiO_2@C-G)杂化物。结果表明:SiO_2与蔗糖的质量比是影响SiO_2@C-G杂化物电化学性能的重要因素。15-SiO_2@C-G杂化物(SiO_2与蔗糖的质量比为0.15),表现出较好的可逆储锂性能。电流密度为100 m A·g~(-1) ,首次放电比容量为906 m Ah·g~(-1) ,循环216次后,该电极材料的放电比容量可保持在542 m Ah·g~(-1) 。优异的循环稳定性及可逆容量归因于杂化物良好的导电性,SiO_2颗粒较小的尺寸及均匀分布三者之间的协同效应。该文提出的方法有望为导电性差的金属氧化物基电极材料提供一种简单环保的制备策略。  相似文献   

5.
分别以多巴胺和正硅酸乙酯为碳源和硅源,先采用一步法合成出球形C@SiO_2复合材料,然后通过化学刻蚀制得一种表面积达875 m2·g-1、表面富含N原子的中空炭微球(N-HCS)。N-HCS独特的纳米结构可以有效地抑制硫在充放电过程中的体积膨胀和聚硫化物的穿梭效应,同时表面掺杂的氮能够提高活性物质的导电性,进而提高正极材料的循环稳定性和大倍率性能。结果表明,该碳/硫复合材料的在0.2 C电流密度下的首次放电容量达1 179 mAh·g~(-1);经100次反复充放电后,其放电容量仍可保持在540 mAh·g~(-1);具有较好的大电流倍率性能,在电流密度为1 C和2 C时,其可逆放电容量可分别稳定在343 mAh·g~(-1)和247 mAh·g~(-1)。  相似文献   

6.
采用高温煅烧法,以木棉纤维为碳源,成功制备了新型瓦片状结构的无定形炭(KFCNF),并以其为储硫载体材料,探讨了电沉积和热扩散两种不同储硫方法对碳硫复合材料微结构和电化学性能的影响。研究发现,采用电沉积法在碳片表面可获得小粒径、分散均匀的硫颗粒,而热扩散方法的硫是包覆在炭片表面的。电沉积制备的复合材料在100 m A·g~(-1)电流密度下,首次放电容量可达1 199.7 m Ah·g~(-1),经200次循环后仍能保持623.0 m Ah·g~(-1),源于电沉积所形成的硫颗粒利用率较高,并且与炭载体存在较强的化学键合作用,一定程度上抑制硫的流失。  相似文献   

7.
由于钠离子半径比锂离子半径大70%,使得钠离子在石墨电极材料中脱嵌较困难,需要对石墨负极材料进行改性。以天然石墨为原料,采用Hummers法制备氧化石墨烯;在此基础上以钛酸丁酯为原料,采用溶胶-凝胶法制备了TiO_2前驱体/氧化石墨烯(TiO_2/GO)复合材料,通过热处理获得锐钛矿型TiO_2/还原氧化石墨烯(TiO_2/RGO)复合材料。电化学测试结果表明:TiO_2含量为15wt%的TiO_2/RGO复合材料在电流密度为20mA·g~(-1)下的首次放电比容量为74.08mAh·g~(-1),随着循环次数的增加,放电比容量逐渐增大,循环50次后达109.10mAh·g~(-1);充放电效率也呈现出逐渐增大的趋势,循环50次后达65.59%。而纯还原氧化石墨烯首次放电比容量为41.43mAh·g~(-1),循环50次后仅为20.47mAh·g~(-1)。  相似文献   

8.
《功能材料》2021,52(8)
硅基材料作为锂离子电池负极的理论容量达到4 200 mAh·g~(-1),被认为是最有发展前景的负极材料。但其体积膨胀过大,导致循环稳定性较差。通过球磨+碳包覆的方法,对线切割的纳米片层状多晶硅硅泥进行改性,使其作为锂离子电池负极材料的电化学性能得到了改善。结果表明,球磨使原料硅泥粒径明显减小。在电流密度为200 mA·g~(-1)时,原料硅泥球磨20 h后碳包覆的C-Si_(20)的首次充电比容量为1 784.2 mAh·g~(-1)。循环75次后充电比容量为640 mAh·g~(-1),充放电库伦效率保持在98%以上。材料具有比较好的循环性能,可以为光伏产业硅泥废料的回收再利用提供一定的借鉴意义。  相似文献   

9.
为了满足新能源储能及电动汽车对锂离子电池持续快速充电、慢速放电性能的要求,以正硅酸乙酯为二氧化硅前驱体,在两亲性炭材料(ACM)与聚乙二醇400(PEG400)形成的氢键限域体系中制备了大倍率二氧化硅/碳复合锂电负极材料(SiO_2-130/C)。材料表征结果表明,二氧化硅的粒径由500nm(未限域)降低到130nm(限域),同时,富碳的ACM在二氧化硅纳米颗粒表面构建了导电性良好的碳框架。在0.1A·g~(-1)和1A·g~(-1)的电流密度下,SiO_2-130/C的可逆比容量分别为527mAh·g~(-1)和347mAh·g~(-1),且在1A·g~(-1)的电流密度下连续400个充放电循环后,仍具有483 mAh·g~(-1)的可逆比容量,表现出优异的倍率性能及稳定的电化学性能。  相似文献   

10.
长期以来,表面包覆一直是改善锂离子电池电极材料电化学性能的有效手段。本研究采用磁控溅射法将非晶态磷酸锂包覆在Li_4Ti_5O_(12)电极片表面,修饰后电极表面光滑,形成了均匀的非晶态磷酸锂包覆层。在0.01–3.00 V电压范围的充放电测试结果显示,该包覆层可显著改善电极的倍率性能和循环性能。当充放电电流密度分别为35和1750 m A·g~(–1)时,电池容量可以达到265和151 m Ah·g~(–1),远高于未包覆电池的240和22 m Ah·g~(–1),并以88 m A·g~(–1)的电流密度进一步充放电200个循环后,仍保留了238 m Ah·g~(–1)的高可逆容量。这是由于非晶态磷酸锂包覆层可稳定电解质界面,保持粒子间电子通道的完整性,并在电极表面形成交联离子导电网络,使得改性电极的倍率性能和循环稳定性显著提高。  相似文献   

11.
将柠檬酸和Super P (SP)作为碳源用喷雾干燥技术制备出具有分级结构的类球形MgFe_2O_4/C (MFO/C)复合材料,使用场发射扫描电子显微镜(FESEM)、透射电子显微镜(TEM)、X射线粉末衍射仪(XRD)、X射线光电子能谱仪(XPS)和电化学测试等手段表征了样品的形貌、结构和电化学性能。结果表明,在电流密度为0.5 C (500 mA·g~(-1))的条件下这种复合材料的首次放电比容量为1162.7 mAh·g~(-1),200次循环后比容量稳定在约734.5 mAh·g~(-1)。在电流密度为1C (1000 mA·g~(-1))条件下,200次循环后比容量仍保持在约580.4 mAh·g~(-1)。具有优异的循环和倍率性能的原因,可能是SP和柠檬酸分解生成的晶粒间碳形成了良好的导电网络,使材料的导电性提高并缓解了在连续充放电过程中活性物质的团聚和体积膨胀。  相似文献   

12.
以西瓜瓜瓤为碳源,采用两步碳化法制备三维石墨烯(3D-Fiberbased Graphene,3D G)材料,并使用水热法制备了CeO_2-MnO/3DG复合材料,以期获得比电容高,循环寿命好的石墨烯超级电容器电极材料。结果表明:3DG材料具有较高比表面积,最高可达到332m~2·g~(-1)。CeO_2-MnO/3DG复合材料具有三维导电网络结构,金属氧化物颗粒在石墨烯片层间生长均匀,粒径在10nm左右。电化学测试结果显示:在0.5 mol·L~(-1)的Na_2SO_4溶液中,电流密度1A·g~(-1),当摩尔比MnO∶CeO_2=4∶1,复合负载量在80%时得到的CeO_2-MnO/3D G复合材料拥有最高比电容,达308.5F·g~(-1),经过1 000次循环充放电测试比电容保持率为95.5%。CeO_2-MnO/3DG复合材料电化学性能的提高主要是因为两种金属氧化物复合负载与石墨烯的协同作用。  相似文献   

13.
先对炭纤维布(CC)进行不同时间的硝酸热处理,随后采用一步溶剂热方法在炭纤维布上沉积NiCo_2S_4纳米颗粒。结果表明,随着酸处理时间的延长,炭纤维表面粗糙度增加,含氧量增加。当酸处理时间为12 h时,NiCo_2S_4在其表面负载最均匀,复合材料的电化学性能最优,在电流密度为1 A g~(-1)时,比容量可达1 298 F g~(-1),当增大到20 A g~(-1)时,容量仍可保持为原来的89.7%。在5 A g~(-1)电流密度下,循环次数达到3 000次时,容量保持率为95.3%。将所得复合材料作为正极,纳米炭纤维布(CNF)为负极,组装成具有自支撑结构的非对称超级电容器,在功率密度754 W kg~(-1)时,其能量密度可达37.5 Wh kg~(-1)。  相似文献   

14.
以改进的Hummers法制备的Mn~(2+)/氧化石墨烯悬浊液为原料无需添加锰源,采用水热法得到Mn_3O_4含量可调的Mn_3O_4-石墨烯气凝胶(Mn_3O_4-GA)。得益于石墨烯气凝胶相互连通的三维导电网络以及Mn_3O_4纳米粒子和其间的强烈的耦合作用Mn_3O_4-GA表现出了比Mn_3O_4-石墨烯粉末复合物(Mn_3O_4-G)更加优异的储锂性能其中Mn_3O_4-GA-70(Mn_3O_4含量为70%)在100 mA·g~(-1)的电流密度下其可逆比容量达到1073 mA·h·g~(-1),在800 mA·g~(-1)的电流密度下循环200次后其比容量为565 mA·h·g~(-1),保持率为85%。该方法为环境友好制备锰基石墨烯气凝胶提供新思路。  相似文献   

15.
作为电池的重要组成部分,电解质在很大程度上影响着锂电池的安全性、温度适应性、充放电性能和循环寿命。研究合成了二氟草酸硼酸锂(LiODFB)-N-甲基-N-甲氧基乙基吡咯烷双(三氟磺酰亚胺)(Pyr1,2O1TFSI)/亚硫酸酯电解质,展现出良好的离子传导性、电极相容性和宽工作温度范围,其中LiODFB-Pyr1,2 O 1TFSI/DMS电解质体系的电导率和锂离子迁移数分别为8.163×10~(-3)S·cm~(-1),0.28。首次将离子液体基电解质体系的应用温度范围拓展到-40℃,使Li/MCMB电池和Li/LiFePO_4电池在-40~60℃的工作温度范围内均表现出理想的电化学性能。以Li[N(SO_2CF_3)_2](LiTFSI)作为锂盐,将三(乙二醇)二甲醚(TEGDME)作为共溶剂,结合离子液体Pyr1,2O 1TFSI,制备系列Li/S电池电解质。含Li TFSI-(70 wt%)Pyr1,2 O 1TFSI/(30 wt%)TEGDME电解质的Li/S电池表现出优秀的循环性能和倍率性能,在0.1 C充放电倍率下,首周循环周期放电比容量1 212.8 m Ah·g~(-1),循环100周后仍然维持在693.5 m Ah·g~(-1)。在1 C放电倍率下,循环100周放电比容量约为827.3m Ah·g~(-1),库伦效率达到99%以上。同时,该电解质还具有良好的高温性能,电池在80℃仍然可以正常工作,放电容量达1 005.3 m Ah·g~(-1)。在总结相关研究工作的基础上,从离子液体/有机共溶剂电解质体系出发,首次半定量对离子液体/共溶剂体系和电化学基本性质间的构效关系进行了深入分析,对未来面向不同应用方向的锂二次电池电解质体系的设计合成具有一定的理论意义和参考价值。  相似文献   

16.
利用天然鳞片石墨通过改进的Hummers法制备氧化石墨烯(GO),在碱性条件下通过超声波剥离、静电自组装、磁力搅拌和高温还原的方法合成了还原氧化石墨烯/硅(RGO/Si)复合材料。借助XRD、SEM、TEM、EDX能谱分析和比表面积分析等发现,Si颗粒均匀分布在RGO片层内。在室温下,以该复合材料作为锂离子电池负极,在不同电流密度下研究了其电化学性能。结果表明,RGO/Si复合材料(2∶1)首次循环的放电比容量为1 231 mAh/g,首次库仑效率高达90.9%,在20次循环后,可逆容量保持在452 mAh/g,库仑效率为99.2%。RGO/Si复合材料(1∶1)的RGO片层包覆Si颗粒最紧密,其复合结构最稳定,在高电流密度下容量保持率较高。  相似文献   

17.
在对氧化亚硅(SiO)材料进行表面碳包覆和添加导电材料的基础上,掺杂少量纳米Si进一步提高其首次充放电容量和首次库仑效率。采用XRD、SEM、TEM、Raman、FTIR分析材料的物相结构和微观形貌,通过恒流充放电测试仪分析复合材料的电化学性能。结果显示,纳米Si质量为SiOx质量10%的复合材料(SiOx-Si@C@碳纳米管(CNTs)-10)的首次充放电容量分别为1 348.1 mA?h/g和1 874.4 mA?h/g,首次库仑效率为71.9%,循环100周后材料的可逆容量为1 116.2 mA?h/g,容量保持率为82.8%;以不同电流密度充放电,其放电容量远远高于没有纳米Si掺杂的材料。SiOx-Si@C@CNTs复合材料具有较高的首次库伦效率、较好的循环性能和倍率性能。   相似文献   

18.
采用表面活性剂Triton X-100辅助溶剂热法合成花型纳米Sn S2,研究了表面活性剂添加量(0-2 m L)对样品的成分、形貌及电化学性能的影响。X射线衍射光谱(XRD)和能谱(EDS)的测试结果表明:合成的材料为单相Sn S2,具有层状六方Cd I2型晶体结构;扫描电镜(SEM)观察结果表明,Triton X-100在控制花型Sn S2形貌的过程中起了决定性作用,当Triton X-100的添加量为0.5 m L时样品的结晶度最好,花型结构饱满,形貌最佳;电化学性能测试结果表明:Triton X-100添加量为0.5 m L时,在0.01-1.2 V电压范围及0.15C倍率下花型纳米Sn S2的首次放电比容量可达1598 m Ah·g-1,首次可逆比容量为656 m Ah·g-1,循环50次后可逆比容量为572 m Ah·g-1,容量保持率达到87.2%。  相似文献   

19.
石墨烯、柠檬酸和硅纳米颗粒的乙醇混合物经超声分散、乙醇挥发和热处理(800℃1h)制备出炭涂层硅/石墨烯(Si@C/G)纳米复合材料。透射电镜表明,Si纳米颗粒的表面形成了一层厚度约为2nm的均匀炭涂层,石墨烯片层支撑着Si@C纳米粒子,且两者具有较强的相互作用。作为锂离子电池负极材料,Si@C/G电极具有较高的库仑效率,在500 mA·g-1的电流密度下,100卷循环后比容量为1431mAh·g-1,表现出优越的循环稳定性。Si@C/G优异的电化学性能归因于石墨烯片层的高导热率、高导电率和优良的机械柔韧性。  相似文献   

20.
赵朔  张勇  孙雷明  卡欧 《材料导报》2015,29(22):20-24
以钛酸丁酯和LiOH·H_2O为原料,以十六烷基三甲基溴化铵为表面活性剂,利用水热法合成球形尖晶石结构钛酸锂,探讨制备工艺对球形钛酸锂结构的影响,并对合成球形钛酸锂的电化学性能进行表征。结果表明:n(LiOH·H_2O)∶n(钛酸丁酯)=0.9∶1,170℃水热反应36h,并在600℃热处理2h条件下合成的Li_4Ti_5O_(12)具有较好的球形度和结晶度,其在0.1C放电倍率下的首次可逆容量为201 mAh·g~(-1),循环20次后可逆容量仍达198mAh·g~(-1);当放电倍率达50C时,其首次可逆容量仍达149mAh·g~(-1),经20次循环后容量保持率高达98.9%,表现出良好的循环性能和倍率特性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号