首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
超声强化铁碳微电解-Fenton法降解硝基苯废水   总被引:8,自引:1,他引:7       下载免费PDF全文
针对铁碳微电解(Fe0/GAC)-Fenton法降解硝基苯(NB)废水时难连续运行的问题,采用超声(US)强化铁碳微电解-Fenton法降解硝基苯废水。考察了超声对铁碳微电解-Fenton法连续运行效果的影响,研究表明:不更换铁碳填料时,Fe0/GAC-Fenton法连续处理4批硝基苯废水时,硝基苯去除率从69.54%降至31.66%,TOC去除率也从48.11%降至19.20%;而US/Fe0/GAC-Fenton法处理4批相同废水时,硝基苯去除率均近至100%,TOC去除率均稳定在60%以上。与单纯Fe0/GAC-Fenton相比,超声不仅整体上强化了Fe0/GAC-Fenton法降解硝基苯废水的效率,还实现了连续多次高效运行。研究了pH、H2O2投加量及投加次数对Fenton法降解US/Fe0/GAC出水的影响规律,得到适宜操作条件:H2O2总投加量为4 ml并分5次添加,US/Fe0/GAC的出水pH调为4,反应30 min,最终硝基苯去除率达到100%,TOC去除率可达75%。  相似文献   

2.
PCB行业低络合镍废水具有高盐、高COD、含重金属络合离子等特点,废水需去除重金属离子、平衡总盐后才能进入生化系统处理并最终达标排放,本文针对某企业络合镍废水采用芬顿、铁碳微电解联合芬顿、重金属捕集剂等预处理技术处理,确定低络合镍废水有效预处理工艺。  相似文献   

3.
钢铁行业冷轧废水水质复杂、化学需氧量(COD)高,且Fe2+对COD去除干扰大。为了满足冷轧废水达标排放的要求,采用四室动态电渗析法,截留去除COD的同时,考察了Fe2+的去除效率,优化了操作参数。在动态实验中,用V-I曲线法测定系统的极限电压,分析了电压、浓度、流速和时间对COD和盐分去除率的影响。电渗析设备的阴极采用不锈钢板,阳极采用Ti/SnO2-Sb/PbO2,HMTECH-5010-1型均相阴、阳离子交换膜。最佳操作条件为:阴、阳极室进水流速为28.8 mL/min,淡化室和浓缩室流速为19.2 mL/min,12 V恒压输出,阴极室HCl的浓度为0.03 mol/L,阳极室NaOH的浓度为0.03 mol/L。在此操作条件下,淡化室出水pH约为3.0,废水中Fe2+的去除率98.5%(出水浓度<100 mg/L),COD的去除率96.1%(出水<80 mg/L),出水水质符满足《钢铁工业水污染物排放标准》(GB 13456-2012)。  相似文献   

4.
为了能有效降低腈纶纺丝工艺段产生的膜浓缩液中有机污染物和Fe3+含量,采用混凝沉降和吸附工艺联用的方法对膜浓缩液进行预处理。结果显示:在混凝试验pH值为9,聚合硫酸铝(PAS)用量为2 g/L,助凝剂聚丙烯酰胺(PAM)用量为5 mg/L,混凝时间为10~15 min,以及吸附试验pH值为4,硅藻土用量为15 g/L,吸附反应时间为100 min的条件下,膜浓缩液中有机污染物的总去除率为48.74%, Fe3+去除率可达51.93%。混凝-吸附工艺联用可以有效去除腈纶纺丝高浓度有机废水中有机污染物和Fe3+。  相似文献   

5.
铁屑内电解法处理PCB络合废水   总被引:6,自引:0,他引:6  
印刷电路板废水含有多种易与铜等金属离子形成络合物的络合剂,络合剂的存在影响铜的去除,导致铜等重金属的超标.本文根据微电解原理,采用铁屑内电解法处理络合废水,试验结果表明,络合废水中总铜浓度从最高时的1679mg/L下降到0.29mg/L以下,COD去除率在20%左右.  相似文献   

6.
传统Fenton氧化法对高盐废水中有机污染物的处理效果不理想。为提高高盐废水中有机污染物的处理效果,在传统Fenton法基础上选用廉价、安全易得的Fe0代替Fe2+参与反应,并创新性地加入硼(B)作为还原剂,以促进Fenton体系对高盐废水中有机污染物(柠檬黄)的降解。结果表明,B/Fe0/H2O2体系对高盐废水中柠檬黄有着很好的去除效果,在盐(Na2SO4)浓度为0.2 mol/L、反应60 min时,柠檬黄的最终降解率达到100%,B、Fe0以及H2O2的最佳投加量分别为0.2 g/L、0.02 g/L和1 mmol/L。B/Fe0/H2O2体系对盐(Na2SO4)浓度在0~0.4 mol/L的废水都有着很好的柠檬黄降解率,且在废水中含有其他不同阴离子组合时...  相似文献   

7.
本研究采用电芬顿工艺处理垃圾渗滤液纳滤浓缩液,系统考察电流密度、n(H2O2):n(Fe2+)、pH等工艺参数对渗滤液纳滤浓缩液COD的去除性能,运用响应曲面法推算最优工艺条件。结果表明,电芬顿处理渗滤液纳滤浓缩液的最优工艺参数反应时间为2h,电流密度为6.471 mA/cm2,n(H2O2):n(Fe2+)为12,pH为3.78,COD去除率可达到80.7%。  相似文献   

8.
高级氧化技术是一种新型、绿色的水处理工艺,通过各种强化技术更快、更多地产生具有强氧化性的羟基自由基,使其与废水中的有机物发生链式反应,从而将废水中的有机物快速高效降解为无害的无机盐。采用两种典型的高级氧化技术:电芬顿和臭氧,一体化处理船舶生活污水,研究结果表明:在电流密度20 mA/cm2,芬顿试剂n(H2O2):n(Fe2+)=3:1,C(Fe2+)为0.01 mol/L,氧气速率2 L/min,臭氧投加量6 g/L时,电芬顿-臭氧一体化装置能有效降解船舶生活污水中的污染物,当处理时间为120 min时,对COD去除率可达86.4%。  相似文献   

9.
以贵州省仁怀市某白酒废水处理厂二沉池出水为研究对象,采用零价铁(Fe0)活化过硫酸盐(S2O82-,PS)的高级氧化法对其深度处理,并进行工艺条件的优化。通过单因素实验考察了溶液初始pH、PS投加量、n(Fe0)∶n(PS)对白酒废水处理效果的影响,并采用响应面法进行优化验证。结果表明,过硫酸盐法可以有效地降低白酒废水的有机物浓度,优化工艺条件:溶液初始pH为4.08,PS投加量为理论投加量(1 mg/L COD完全氧化理论上需要12 mg/L PS)的1.39倍,n(Fe0)∶n(PS)=1.27。在此条件下,白酒废水的COD去除率达70.33%。  相似文献   

10.
通过单因素实验探究了Fe0类Fenton氧化处理农药中间体废水过程中的最适Fe0和H2O2投加量、初始pH值和最佳处理时间,研究了处理后出水BOD5/CODCr(B/C)值、体系中亚铁和总铁含量以及·OH的变化规律。结果表明Fe0类Fenton体系中,最适Fe0投加量为6.59 g/L,H2O2投加量为3.33 g/L,初始pH=3,处理时间为50 min, CODCr去除率达到42.50%。相比于传统Fenton体系,Fe0类Fenton体系CODCr 去除率提高了约17%,出水B/C值达到0.34,加速了·OH的产生,H2O2添加量明显减少,铁的利用效率得到提高,可以有效减少含铁污泥的生成。  相似文献   

11.
《应用化工》2022,(9):2418-2423
利用类电芬顿处理含铬废水。以TiO_2/石墨复合材料(TiO_2/C)修饰石墨电极为工作电极,当外加电压为-0.4 V时,对铬初始浓度为100 mg/L的含铬废水中总铬的去除率为92.4%,TOC的去除率为63.6%。通过对实验前后工作电极比对研究,证实了TiO_2/C在类电芬顿处理含铬废水中的优越的性能,建立了类电芬顿与絮凝耦合体系,实现了铬和有机物同步去除。  相似文献   

12.
采用Fe(Ⅱ)(EDTA)/O3工艺处理含聚废水,研究EDTA浓度、Fe2+浓度、水力停留时间(HTR)、初始pH对聚丙烯酰胺(PAM)去除率和COD降解效能的影响,探讨了Fe(Ⅱ)络合催化臭氧反应动力学特征及其机理。结果表明:当EDTA浓度为0.050mmol/L、Fe2+浓度为0.050mmol/L和HRT为120min时,PAM去除率为75%;增加水样初始pH有利于提高PAM去除率,同时水样pH随HRT增加缓慢下降;废水COD值在HRT为30min内逐渐增至最大,随后逐渐减小并达到稳定。Fe(II)(EDTA)/O3工艺处理含聚废水的反应符合二级动力学反应,初始PAM质量浓度在50~100mg/L范围内,二级反应速率常数为2.35×10-4~3.35×10-4L/(mg·min)。  相似文献   

13.
蔡世颜  徐菁  汪博飞  夏娜  程珊  刘琪 《净水技术》2023,(S1):160-166
芬顿氧化法因其具有较好的有机物降解效果已应用于许多大规模的污水深度处理工程中,近年来发展出以紫外光(UV)/H2O2等方法为代表的类芬顿技术,其基本原理与使用方法均与芬顿技术类似,但光芬顿所需的Fe2+浓度更低,反应不需要很低的pH,运行更加高效、安全和简单。文章通过构建光芬顿反应体系,搭建光芬顿反应装置,以H2O2投加量、亚铁盐投加量、反应pH、光源为反应条件参数,以COD&去除效果为降解性能指标,优化降解反应过程中的工艺参数,验证了光芬顿体系对废水CODCr的去除机理,确定了光芬顿体系的最优反应条件,并研究了降解规律,分析了经济成本,提出了光芬顿体系对印染化工废水深度处理的应用建议。试验中最优反应条件如下:pH值为6,H2O2投加量为400 mg/L,Fe2+投加量为21.0 mg/L。该条件下,经过光芬顿处理,可将二沉池出水的COD&  相似文献   

14.
US/Fenton氧化-混凝法对焦化废水的预处理研究   总被引:10,自引:0,他引:10  
采用US/Fenton氧化-混凝法对高浓度焦化废水进行预处理.考察了对处理效果的影响因素,确定了最适工艺条件.结果表明,在超声波功率500W,H2O2投加质量浓度为6.0 g/L,Fe2 为400 mg/L,pH 3,Al2(SO4)3、PAM投加量分别为480、4.0 mg/L的条件下,COD、NH3-N、CN-和色度的去除率分别达75.1%、53.4%、62.8%和83.1%,废水的COD由处理前的4 799mg/L降至1 195 mg/L,BOD/COD由0.196提高到0.373,出水可生化性良好.US/Fenton氧化-混凝法可作为高浓度焦化废水的一种有效的预处理方法.  相似文献   

15.
采用热和Fe2+共活化Oxone法深度氧化处理填埋污泥脱水液,分析了Oxone投加量、温度、pH值对有机物去除效果的影响。结果表明,该氧化体系对胡敏酸类物质具有较好的去除效果;COD降解符合准二级动力学模型,改变Oxone投加量和pH值会影响有机物基团的降解顺序。在污泥脱水液初始COD为(600±22)mg/L,温度为45℃,pH值为2,Oxone投加量为17.9 mmol/L,Oxone/Fe2+摩尔比为50时,COD去除率达到31.2%,最终出水COD为423 mg/L,达到《污水排入城镇下水道水质标准》(GB/T 31962—2015)的A级排放标准。  相似文献   

16.
为了探究CF电极在电芬顿脱色中的应用性能及机理,通过对阴极材料的对比,建立了以碳毡为阴极的电芬顿降解体系,探讨了不同操作参数如废液pH、O2流量、电压、Fe2+浓度等因素对活性红195染料废水的脱色率、COD去除率的影响。根据实验结果,采用碳毡做阴极,Fe2+浓度为20 mg/L,pH为3、O2流量60 mL/min、电压3 V条件下,反应3 h染料几乎完全脱色,COD去除率可达73.31%;利用猝灭实验初步探讨了染料降解的主要机制,·OH的生成及其强氧化作用是染料降解的主要因素;利用UV-Vis及GC-MS对染料降解机理进行了分析,发现反应前30 min降解速度最快;电极稳定性实验及扫描电子显微镜(SEM)形貌分析证明了碳毡阴极具有良好的电化学稳定性。  相似文献   

17.
高级氧化法是处理低生化性废水的一种有前途的技术。采用亚铁离子活化过硫酸盐(Fe2+/PS)体系预处理某低生化性制药废水。通过小试研究考察了pH、过硫酸钠、硫酸亚铁和PAC质量浓度对Fe2+/PS体系处理效果的影响及各影响因素的最佳参数。结果表明,pH对Fe2+/PS体系处理效果的影响最大,其次是硫酸亚铁质量浓度和过硫酸盐质量浓度,PAC质量浓度的影响可以忽略不计。综合考虑成本因素,各参数的最佳水平组合:pH≈7、硫酸亚铁、过硫酸钠、PAC质量浓度分别为1.0、0.3、0.03 g/L。通过ESR(电子自旋共振)测试和猝灭试验,确定反应体系中起主要降解作用的活性物种。结果表明,SO4·-活跃于Fe2+/PS反应体系中,并在反应体系中起主要作用。通过中试研究考察了Fe2+/PS反应体系处理前后废水COD、TOC、NH3-N的变化。研究表明,经过处理后的废水,COD去除率为50%,TOC去除率为67%,NH3...  相似文献   

18.
采用混凝沉淀、铁碳微电解、芬顿氧化3种方法对高浓度制药废水进行降解实验研究,考察了单独方法和组合方法的实际降解效果,并寻找最佳处理效果的组合工艺。结果表明:高浓度抗生素废水,具降难解性,使用单一的物化处理法,去除效果均不佳,最大去除率为21.4%;采用两种组合处理工艺时,去除率最高提高13.9%;铁碳微电解反应结束后调节pH,COD的去除率更高。当原水COD为55 600 mg/L,经过混凝沉淀-铁碳微电解(调pH)-芬顿反应后,COD的去除率接近60%,该组合工艺具有去除率高,反应时间短的特点。  相似文献   

19.
对苏州工业园某厂印染废水进行芬顿氧化深度处理。采用正交实验,研究反应p H、芬顿反应时间,30%双氧水、硫酸亚铁和壳聚糖絮凝剂三者的投加量对COD去除效果的影响。实验结果表明:废水p H调至3,芬顿反应时间为40 min,硫酸亚铁投加量1250 mg/L、30%双氧水投加量为1.5 g/L、壳聚糖絮凝剂投加量为3 mg/L时,印染废水的COD去除率最优,可达80%以上。  相似文献   

20.
季戊四醇废水中甲醛含量在1200~1500 mg/L、COD平均浓度在6000 mg/L左右,为有效去除季戊四醇废水中的甲醛,采用芬顿氧化法去除季戊四醇废水中的甲醛进行实验研究,通过静态烧杯实验确定最佳的双氧水及硫酸亚铁投加量、反应时间和脱气过程中的曝气强度,实验结论表明:在芬顿反应时间40 min,双氧水及硫酸亚铁投加量分别为0.5 kg/m~3和0.6 kg/m~3,且脱气过程曝气强度为16 L/m~2·min时,出水甲醛含量在120 mg/L,去除率可以做到90%以上,出水COD约在5000 mg/L左右,去除率约为17%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号