首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为提升风电功率预测精度,提出基于二层分解技术和粒子群优化长短期记忆(PSO-LSTM)神经网络组合的超短期风电功率预测模型。对风电功率原始数据,采用快速集合经验模态分解(FEEMD)方法将其分解为一系列本征模态函数(IMF)分量和余项,针对高频分量采用变分模态分解(VMD)进行二层分解。运用样本熵来解决分量个数过多、计算量繁杂的问题。通过偏自相关函数(PACF)筛选出与预测值关联程度高的元素确定输入维数。最后,选用PSO来优化LSTM相关参数建立预测模型并叠加获得最终值。试验结果表明,该组合模型有效提高了预测精度。  相似文献   

2.
随着风电在电力系统中的占比逐步提高,风电功率的精确预测对电力系统的安全稳定运行具有重要意义。然而,风电的随机性和间歇性极大地影响其功率的精确预测。为此,提出二次分解组合长短期记忆(LSTM)的短期风电功率预测模型。首先,采用经验模态分解(EMD)技术将原始风电序列分解为若干固有模态分量;再采用样本熵(SE)技术将各分量重组为高、中、低频3个序列,针对高频模态混叠再次采用麻雀搜索算法-变分模态分解(SSA-VMD)二次分解技术;最后,采用SSA算法对LSTM的参数进行寻优并完成风电功率预测。以湖北省某风电场对所提模型进行验证,并与其他模型进行对比。结果表明,所提模型的平均绝对误差(MAE)为5.79 kW,均方根误差(RMSE)为5.64 kW,平均百分比误差(MAPE)为17.38%,具有更好的预测精度。  相似文献   

3.
曾亮  雷舒敏  王珊珊  常雨芳 《电网技术》2021,45(12):4701-4710
为了提高风电功率的预测精度,提出了一种基于最优变分模态分解(optimal variational model decomposition,OVMD)、麻雀算法(sparrow search algorithm,SSA)、深度极限学习机(deep extreme learning machine,DELM)和灰色模型(grey model,GM)的超短期风电功率预测方法.该方法通过OVMD对原始风电功率时间序列进行自适应分解;然后针对各分量建立DELM预测模型并利用SSA算法进行参数寻优,并对各个分量的预测结果进行求和重构;利用GM对误差序列进行预测;最后将误差的预测值与原始风电功率的预测值叠加得到最终预测结果.对北方某风电场的风电功率数据进行仿真实验,结果表明,该方法预测效果明显优于传统方法,有效提高了超短期风电功率预测的精确性.  相似文献   

4.
为解决风速不确定性和波动性造成风电功率预测精度不高的问题,提出一种基于变分模态分解(VMD)、改进麻雀搜索算法(ISSA)和门控循环神经网络(GRU)的VMD-ISSA-GRU组合模型。首先,利用中心频率法确定采用VMD分解后的模态分量个数,这样有效避免了过分解或者分解不充分。其次引入混沌映射、非线性递减权重以及一个突变策略来改进麻雀搜索算法,用于优化门控循环神经网络,然后对分解得到的各个子序列建立ISSA-GRU预测模型,最后叠加每个子序列的预测值得到最终的预测值。将该模型用于实际风电功率预测,实验结果表明:VMD-ISSA-GRU组合模型的平均绝对误差、平均绝对百分比误差、均方根误差分别为1.211 8 MW、1.890 0及1.591 6 MW;相较于传统的GRU、长短时记忆(LSTM)神经网络、BiLSTM(Bi-directional LSTM)神经网络模型以及其他组合模型在预测精度上都有明显的提升,能很好地解决风电功率预测精度不高的问题  相似文献   

5.
由于风力发电的随机性和间歇性,风功率预测不仅需要准确的点预测,而且需要可靠的区间预测和概率预测来量化风功率的不确定性。提出了一种基于变分模态分解(variational mode decomposition,VMD)和分位数卷积-循环神经网络的风功率概率预测模型。首先,使用VMD技术将原始风功率数据序列分解为一系列特征互异的模态分量,再通过卷积神经网络(convolutional neural network,CNN)提取反映各模态分量动态变化的高阶特征。然后,基于提取的高阶特征进行分位数回归建模,采用长短期记忆(long short-term memory,LSTM)循环神经网络预测未来任意时刻不同分位数条件下的风功率值。最后,利用核密度估计(kernel density estimation,KDE)得到风功率概率密度曲线。以中国某风电场数据作为算例测试,证明了所提出模型的有效性。  相似文献   

6.
为提高风电功率预测精度,提出了一种基于贝叶斯优化的变分模态分解(variationalmodedecomposition,VMD)和门控循环单元(gatedrecurrentunit, GRU)相结合的风电功率预测方法。首先使用VMD算法对风电功率序列进行分解,并根据排列熵(permutation entropy, PE)的大小来确定序列分解的最佳模态数。然后将分解后得到的子序列分量与关键气象变量数据结合构成模型输入特征。使用GRU网络对各个子序列分量分别进行预测,并将各个子序列分量的预测结果进行重构得到风电功率预测结果。最后采用贝叶斯优化方法对各个子序列预测模型的网络初始超参数进行优化。采用某风电场的风电数据对所提模型进行验证,并与其他6种模型进行性能对比。结果表明,基于贝叶斯优化的VMD-GRU预测模型明显优于其他模型,具有较好的泛化能力,能够有效提高风电功率预测精度。  相似文献   

7.
针对风电功率的高随机和强波动性,提出一种基于EMD-SA-SVR的风电功率超短期预测方法。采用经验模态分解(Empirical Mode Decomposition, EMD)提取风电功率序列的不同特征。将原始序列分解为多个更具规律的模态,针对每个模态序列建立各自的预测模型,以消除不同特征之间的相互影响。鉴于支持向量回归(Support Vector Regression, SVR)好的泛化能力,研究建立基于SVR的各模态预测模型。进一步采用模拟退火(Simulated Annealing,SA)算法对SVR参数进行优化以解决模型选择的多极值复杂非线性问题,获得各模态分量的最优模型,进而汇总各模态分量的结果得到风电功率预测值。在某风电场历史数据上的对比分析表明,EMD-SA-SVR模型可以有效提高风电功率超短期预测精度。  相似文献   

8.
《电网技术》2021,45(3):855-862,中插2-中插3
为提高风电功率预测的精度,提出了一种基于互补集合经验模态分解(complementaryensembleempiricalmode decomposition,CEEMD)、缎蓝园丁鸟优化算法(satinbower birdoptimizationalgorithm,SBO)及最小二乘支持向量回归(leastsquaressupportvectorregression,LSSVR)模型的超短期风电功率组合预测方法。针对风电序列的随机波动性,采用CEEMD对风电功率序列进行分解,将分解得到的不同特征尺度的各分量作为LSSVR模型的训练输入量。引入SBO算法对LSSVR的正则化参数与核函数宽度进行优化,建立各分量的预测模型,将各分量的预测输出值叠加得到最终的风电功率预测值。所提CEEMD-SBO-LSSVR组合预测方法不仅有效降低了预测的复杂度,而且保证原始风电序列经模态分解处理后具有小的重构误差。仿真结果表明,与其他预测模型相比,所提方法具有较高的超短期风电功率预测精度。  相似文献   

9.
针对风电功率预测精度较低的问题,提出一种融合奇异谱分析(SSA)、卷积神经网络(CNN)、双向门控循环单元(BiGRU)及Attention机制的组合预测模型。为抑制风电功率随机波动特性带来的预测功率曲线滞后性问题,采用SSA方法将原始数据序列分解为一系列相对平稳的子分量,并基于各分量模糊熵(FE)值完成各分解分量的有效重构;构建了CNN-BiGRU-Attention模型并用于各重构分量建模预测,其中,CNN网络用以实现各重构分量高维数据特征的有效提取,BiGRU网络用以完成CNN获取的关键特征向量非线性动态变化规律的有效捕捉,Attention机制的引入用于加强对功率数据关键特征的有效学习;通过叠加基于CNN-BiGRU-Attention模型的各重构分量预测值得到最终预测结果。以新疆哈密地区风电场实际运行采集数据为试验样本进行算例分析,结果表明,所提方法可有效缓解风电功率预测结果滞后现象,预测精度全面优于其他预测方法。  相似文献   

10.
童宇轩  金超  李灿 《江苏电器》2023,(11):26-32
针对风电功率存在间歇性、非线性和波动性而难以准确预测的问题,提出一种遵循“序列分解-网络预测-序列重构”的风电功率预测模型。针对风电场集群中的不同风电机组出力特性曲线,使用迭代自组织数据分析聚类算法(ISODATA)聚类得到典型出力曲线;利用自适应噪声完全集成经验模态分解(CEEMDAN)算法对聚类得到的原始风电序列数据进行模态分解,减少数据波动所带来的预测误差;建立各模态分量的双向长短期记忆网络(BiLSTM)预测模型,并使用改进麻雀搜索算法(ISSA)优化网络参数,再将各模态分量的预测结果叠加得到风电功率的最终预测结果。算例结果表明,所提预测模型的预测精度相比其他对比模型更高,且有着更好的泛化能力。  相似文献   

11.
风电功率的准确预测是减少风电接入电网的不良影响的必要前提。然而风电功率序列在时间上和空间上表现出非平稳性使其难以准确预测,因此提出一种基于集合经验模态分解(EEMD)和深浅层学习组合的短期风电功率组合预测方法,其中深度学习使用稀疏自编码器(SAE)而浅层学习则使用BP神经网络,从而建立EEMD-SAE-BP预测模型。该模型先用EEMD将风电功率原始序列分解为一系列按不同时间尺度分布的分量;然后针对分量中的高频分量建立SAE预测模型,对低频分量则用BP网络建立预测模型;最后将各子序列预测结果叠加得到最终的风电功率预测结果。通过比较几种预测模型的结果,本文提出的预测模型能有效地提高预测精度,有较高的实用价值。  相似文献   

12.
针对风电场日前风电出力预测问题,应用一种基于经验模态分解法优化支持向量机的算法的短期风电功率组合预测方法。首先采用经验模态分解法将历史风电功率数据分解为一系列相对平稳的分量序列,以减少不同特征信息间的相互影响,然后采用优化的支持向量机法对所分解的各分量序列分别建立预测模型,针对各分量自身特点选用不同的核函数和参数以取得单个分量的最佳预测精度,最后把各个分量的预测结果叠加,形成风电功率的最终预测值。算例表明,与其他单一预测方法相比,本文使用的组合算法预测精度更高。  相似文献   

13.
准确可靠的风电功率预测对电力系统调度、风电场的效益和电网的安全稳定运行具有重要意义。为了提高超短期风电功率预测的准确性,提出了一种基于自适应噪声完备经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)和改进野狗优化算法(improved dog optimization algorithm,IDOA)优化双向长短时记忆网络(bi-directional long short-term memory,BiLSTM)的组合模型预测超短期风电功率方法。该方法先采用CEEMDAN分解方法将原始的数据分解来降低原始数据的复杂性和不稳定性,将分解后的所有序列进行偏自相关方法分析,选出重要性较大序列作为IDOA-BiLSTM模型的输入,最后通过IDOA-BiLSTM模型进行超短期风电功率预测。采用甘肃某风电场实测数据为数据集,进行训练模型和预测分析,结果表明所提出的超短期风电功率预测模型具有较高的预测精度,具备实际应用的可行性。  相似文献   

14.
针对风速序列随时间、空间呈现非平稳性变化的特征,提出一种基于经验模态分解(empirical mode decomposition,EMD)和支持向量机(support vector machine,SVM)的EMD-SVM短期风电功率组合预测方法。该方法首先利用EMD将风速序列分解为一系列相对平稳的分量,以减少不同特征信息间的相互影响;然后利用SVM法对各分量建立预测模型,针对各序列自身特点选择不同的核函数和相关参数来处理各组不同数据,以提高单个模型预测精度。最后将风速预测结果叠加并输入功率转化曲线以得到风电功率预测结果。研究结果表明,EMD-SVM组合预测模型能更好地跟踪风电功率的变化,其预测误差比单一统计模型降低了5%~10%,有效地提高了短期风电功率预测的精度。  相似文献   

15.
风电功率的准确预测可以有效地减少并网波动。现有的风电功率预测模型存在输入特征过多、超参数选择难、时序过长易丢失重要信息等问题。为此,提出了一种麻雀搜索算法(SSA)优化双向长短时记忆(BiLSTM)加注意力机制(AM)的短期风电功率融合预测模型。首先,SSA对BiLSTM神经网络的节点数、学习率和训练次数等超参数进行寻优,确认最佳参数;然后,引入AM对BiLSTM的输入特征分配不同权重,强化关键特征;最后,应用所提模型对新疆210 MW风电场的风电功率进行预测,并与其他模型的预测结果对比。结果表明,SSA-BiLSTM-AM预测模型的均方根误差(RMSE)为5.411 4、平均绝对误差(MAE)为3.674 9,显著优于其他模型的预测精度,证明了SSA优化算法和AM能够有效提高风电机组的短期功率预测精度。  相似文献   

16.
为了提高风电场输出功率的预测精度,提出一种基于经验模态分解(empiricalmode decomposition,EMD)与小波包分解(wavelet packet decomposition,WPD)的组合分解方法,与纵横交叉算法(crisscross optimization,CSO)优化后的Elman神经网络组成组合风电功率预测模型。该模型首先利用EMD将风电功率序列进行分解,然后利用样本熵计算EMD分解后序列的复杂度。对于高复杂度序列,利用WPD对序列进行二次分解,建立EMD-WPD-CSO-Elman预测模型;对于复杂度适中的序列,采用CSO优化Elman神经网络参数,建立EMD-CSO-Elman预测模型;对于低复杂度序列,直接建立EMD-Elman预测模型。最后叠加各个序列的预测结果,得到最终的风电预测功率。以某风电场实际采集数据为例,预测提前24 h的风电功率,并与EMD-WPD-CSO-BP、EMD-Elman及WPD-Elman预测模型比较,结果表明,本文提出的风电功率预测组合模型具有更好的精度。  相似文献   

17.
为了提高风电功率短期预测精度,本文提出了一种基于ICEEMDAN-SE-MSGJO-LSTM-EC模型的短期风电功率预测模型。首先,通过ICEEMDAN对原始风功率信号进行分解并通过样本熵计算熵值相近的分量相加重构。其次,建立MSGJO-LSTM预测模型,通过改进金豺优化算法(MSGJO)优化LSTM网络参数,对各模态分量进行预测。最后,通过对各模态分量预测结果进行误差修正(EC)并将所有模态预测结果相加得到最终预测结果。以新疆某风电场为例,采用本文所提预测模型进行仿真分析,试验结果表明本文基于ICEEMDAN-SE-MSGJO-LSTM-EC的预测模型预测精度更高。  相似文献   

18.
基于EEMD和ARCH的风电功率超短期预测   总被引:1,自引:0,他引:1       下载免费PDF全文
针对风电功率具有非平稳性和波动集群现象,提出一种基于集合经验模态分解和自回归条件异方差组合模型预测方法。该方法通过EEMD分解法将风电出力分解为一系列平稳的时序分量,再由游程判定法,将时序分量重组为波动分量、短期趋势分量和长期趋势分量,以集中分量特征信息降低预测难度;针对各分量的波动特征,建立相应的ARCH预测模型。算例结果表明,该种组合预测方法简单,具有较高的预测精度,能更好的反应风电功率的波动特性。  相似文献   

19.
准确预测风电功率对风电规模化并网至关重要。为了更精确的对风电功率进行预测,提出一种基于可变模式分解(Variational Mode Decomposition,VMD)-样本熵(Sample Entropy,SE)和改进粒子群算法(Improved Particle Swarm Optimization,IPSO)优化贝叶斯神经网络(Bayesian Neural Network,BNN)的超短期风电功率组合预测模型。首先采用VMD-SE将原始风电功率时间序列分解为一系列不同带宽的模式分量以降低其非线性,然后对全部分量分别建立贝叶斯神经网络模型进行预测,并采用IPSO对神经网络的权值和阈值进行寻优,以求获得最佳的预测效果。实验结果表明,基于VMD-SE的预测模型较采用其他常规分解方式时预测精度明显提高,所提组合预测模型具有较高的预测精度。  相似文献   

20.
超短期风电功率预测对接入大规模风电的电力系统实时调度具有重要的意义。根据风电功率的影响因素和风速周期变化的特性,提出了基于相似时段的训练样本提取方法。以数值天气预报信息(NWP)作为模型输入,建立了广义回归神经网络(GRNN)预测模型。利用黑龙江依兰风电场的数据进行训练和预测,并将预测结果与全样本的广义回归神经网络预测方法进行对比,结果表明,相似性模型的预测精度最高,比全样本GRNN模型预测精度提高了7.72%,该方法对风电场超短期风速预测具有一定的实用价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号