首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
Flexure-based parallel mechanisms (FPMs) are a type of compliant mechanisms that consist of a rigid end-effector that is articulated by several parallel, flexible limbs (a.k.a. sub-chains). Existing design methods can enhance the FPMs’ dynamic and stiffness properties by conducting a size optimization on their sub-chains. A similar optimization process, however, was not performed for their sub-chains’ topology, and this may severely limit the benefits of a size optimization. Thus, this paper proposes to use a structural optimization approach to synthesize and optimize the topology, shape and size of the FPMs’ sub-chains. The benefits of this approach are demonstrated via the design and development of a planar X  Y  θz FPM. A prototype of this FPM was evaluated experimentally to have a large workspace of 1.2 mm × 1.2 mm × 6°, a fundamental natural frequency of 102 Hz, and stiffness ratios that are greater than 120. The achieved properties show significant improvement over existing 3-degrees-of-freedom compliant mechanisms that can deflect more than 0.5 mm and 0.5°. These compliant mechanisms typically have stiffness ratios that are less than 60 and a fundamental natural frequency that is less than 45 Hz.  相似文献   

2.
Lubrication conditions and blank holder force (BHF) are two key processing parameters in deep drawing. This is more obvious in micro forming because of the miniaturization of the specimen size. Micro conical–cylindrical cups with internal conical bottom diameter of only 0.4 mm were well formed. The influences of lubrication conditions and BHF on micro deep drawing of micro conical–cylindrical cups were investigated using a micro blanking–deep drawing compound mold. Pure copper C1100 with a thickness of 50 μm, which was annealed at 450 °C for 2 h in vacuum condition, was chosen as the specimen material. The experiments were conducted on a universal testing machine with a forming velocity of 0.05 mm/s under 4 kinds of lubrication conditions and BHF. The experimental results showed that a micro conical–cylindrical cup with internal conical bottom diameter of only 0.4 mm was well formed, and the limiting drawing ratio (LDR) reached 2.1. The polyethylene (PE) film, which decreased the drawing force and increased the drawing ratio (DR), was superior to castor oil, petroleum jelly and dry friction, and can be chosen as a proper lubricant for micro deep drawing. The rim of the micro cup seriously wrinkled when BHF was less than 4.2 N. The bottom of the micro cup cracked when the BHF was larger than 5.6 N.  相似文献   

3.
The production of Ni3Al was performed under an uniaxial pressure of 150 MPa at 1050 °C for 1 h. The formation temperature of Ni3Al was determined to be 655 °C. The presence of Ni3Al was confirmed by XRD analysis. SEM analysis revealed that the Ni3Al phase has very low porosity. The relative density and microhardness of test materials were 97.8% and about 359±31 HV1.0, respectively. The specific wear rate of Ni3Al was 0.029 mm3/N m for 2 N, 0.017 mm3/N m for 5 N and 0.011 mm3/N m for 10 N, respectively. The distribution of alloying elements was determined by energy-dispersive spectroscopy (EDS).  相似文献   

4.
With regard to the fact that laser sintering belongs to the high-temperature processes in which metal particles are sintered by a high-power laser, forming a homogenous structure, it is necessary and important to know the characteristics and the mechanism of these thermal processes. A high-power laser system produces three forms of heat that include convection, conduction, and radiation. These thermal processes affect the formation of internal stresses and tension that lead to deformations and rapidly influence the resulting quality, dimensions, density, micro-structure, and mechanical properties of fabricated parts. In response to this fact, it was important to analyse these heat transfer methods instantly during the direct metal laser sintering (DMLS) process simulation and subsequently monitor the parameters and settings of the sintering equipment in order to obtain acceptable manufacture outputs intended for further use. This work is focused on the creation of a FEA simulation model and the simulation of thermal processes across an object during and after the sintering process in the cooling stage, when it is important to consider a laser beam trajectory, temperatures of individual elements affected by the laser beam, and current laser energy in time. A 3D FEA simulation model was created in order to represent actual behaviour of a part during the sintering process. The simulation model consisted of two sub-models, particularly the building platform model with the dimensions of 250 mm × 250 mm × 22 mm, with stainless steel as the selected material, and the model of individual layers of sintered titanium powder with the dimensions of 10 mm × 10 mm × 0.03 mm. The total number of used layers was 12, which represents the total thickness of 0.36 mm. Applied power was P = 170 W. The simulation as such was carried out using the FEA software, Simulia Abaqus supported on the Windows x86-64 platform, which uses an integrated solver to make thermal and mechanic calculations. The calculations included also the impact of the protective argon atmosphere located in the process chamber. Mutual impact between individual layers was also considered. The simulation results were confronted with the results of already performed experimental studies of other scientific works, with the compliance and confirmation of assumptions being on a very good level.  相似文献   

5.
This paper presents a long-stroke contact scanning probe with high precision and low stiffness for micro/nano coordinate measuring machines (micro/nano CMMs). The displacements of the probe tip in 3D are detected by two plane mirrors supported by an elastic mechanism, which is comprised of a tungsten stylus, a floating plate and two orthogonal Z-shaped leaf springs fixed to the outer case. A Michelson interferometer is used to detect the vertical displacement of the mirror mounted on the center of the floating plate. An autocollimator based two dimensional angle sensor is used to detect the tilt of the other plane mirror located at the end of the arm of the floating plate. The stiffness and the dynamic properties are investigated by simulation. The optimal structural parameters of the probe are obtained based on the force-motion model and the constrained conditions of stiffness, measurement range and horizontal size. The results of the performance tests show that the probe has a contact force gradient within 0.5 mN/μm, a measuring range of (±20 μm), (±20 μm), and 20 μm, respectively, in X, Y and Z directions, and a measurement standard deviation of 30 nm. The feasibility of the probe has preliminarily been verified by testing the curved surface of a convex lens.  相似文献   

6.
Micro-milling is a promising approach to repair the micro-defects on the surface of KH2PO4 (KDP) crystal. The geometrical parameters of micro ball end mill will greatly influence the repairing process as a result of the soft brittle properties of KDP crystal. Two types of double-edged micro ball end mills were designed and a three-dimensional finite element (FE) model was established to simulate the micro milling process of KDP crystal, which was validated by the milling experiments. The rake angle of −45°, the relief angle of 45° and the cutting edge radius of 1.5–2 μm were suggested to be the optimal geometrical parameters, whereas the rake angle of −25° and the relief angle of 9° were optimal just for micro ball end mill of Type I, the configuration with the rake angles ranging from 0° to 35°, by fully considering the cutting force, and the stress–strain distribution over the entire tool and the cutting zone in the simulation. Moreover, the micro polycrystalline diamond (PCD) ball end mills adopting the obtained optimal parameters were fabricated by wire electro-discharge machining (WEDM) and grinding techniques, with the average surface roughness Ra of tool rake face and tool flank face ∼0.10 μm, and the cutting edge radius of the tool ∼1.6 μm. The influence of tool's geometrical parameters on the finished surface quality was verified by the cutting experiments, and the tool with symmetric structure was found to have a better cutting performance. The repairing outlines with Ra of 31.3 nm were processed by the self-fabricated tool, which could successfully hold the growth of unstable damage sites on KDP crystal.  相似文献   

7.
We developed a promising shearing force sensor that is small in size and can measure shearing force along two axes independently. This sensor consists of an elastic gum frame and an optical sensor chip (6 mm × 6 mm × 8 mm). From the experimental results, the resolutions of the sensor along the x- and y-axes are found to be 0.070 N and 0.063 N. We also experimentally demonstrated that the sensor can separately measure shearing force along two axes. Finally, we demonstrated that the scale factor which correspond to resolution and linear portion which correspond to measuring range of the signals can be changed easily by using three types of elastic gum frame. This sensor can be embedded in the finger of a robot hand and use it to not only measure shearing force but also detect the slip phenomenon.  相似文献   

8.
Operation of a low wear (2 × 10?5 mm3/(N-m)), low contact resistance copper sliding electrical contact was demonstrated. The wear rate of a lightly loaded copper–beryllium metal fiber sliding on a polished copper counterface was insensitive to (DC) current density values as great as 440 A/cm2 (in a brush positive or anodic configuration). Low wear and relatively low friction (μ  0.2 to 0.3) was achieved by operating the contact immersed in a liquid medium consisting of a hydrofluoroether with helium cover gas, inhibitingoxidationand providing cooling of the contact. Similar experiments performed in liquid mediums of ultrapure water and dilute (3%) hydrogen peroxide show an order of magnitude increase in wear rate and provide further insight on the role of electrochemically enhanced oxidation and the degraded contact resistance and tribological behavior of non-noble sliding electrical contacts in general. In contrast to high current density slidingin hydrofluoroether, an order of magnitude greater wear rate was observed for similar sliding conditionsin hydrogen peroxide or water without the aid of externally supplied electric potential. A conceptual model is proposed correlatingthe rate of brush wear to fatigue strength and electrochemically enhanced oxidation as a result of high current density transport through the contact. A mathematical expression was derived to calculate the approximate wear volume of a single fiber laterally contacting a slip-ring, based on direct measurement of the wear scar geometry.  相似文献   

9.
10.
The development of a new probing method to inspect the inner diameter of micro-scale holes is presented in this paper. This was accomplished by contact detection using acoustic emission with a Ø170 μm rotating wire probe tip. Contact is detected when the rotating probe approaches and impacts the hole’s inner surface. The effective diameter of the rotating probe is calibrated by using a high precision grade 0 Mitutoyo gauge block. The wire rotating probe used was fabricated with micro stainless steel wire and micro tubes. The probe’s effective diameter was compensated for in the measurement of the hole. The probe was used to measure the diameter and the roundness of micro-scale holes. Probes used in previous publications have different geometry than the probe in this paper and are used almost exclusively for external dimensions. Micro-scale holes of less than 1.0 mm in diameter and 10 mm in depth are successfully measured and the 3D profile is created accordingly. Also, the out-of-roundness values of each level spacing, 50 μm apart in height, are calculated.  相似文献   

11.
The tribological properties of Ni-17.5Si-29.3Cr alloy against Si3N4 were studied on a ball-on-disc tribotester between room temperature and 1000 °C. The effects of temperature on the tribological properties of the alloy were investigated. The worn surfaces of the alloy were examined using scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The results indicated that the tribological behavior of the alloy expressed some differences with increase in testing temperature. At low and moderate temperatures (below 800 °C), the alloy showed excellent wear and oxidation resistances, and the wear rate of the alloy remained in the magnitude of 10?5 mm3/Nm; but at elevated temperature (800–1000 °C), the wear and oxidation resistances decreased, and the wear rate of the alloy increased up to 10?4 mm3/Nm. The friction coefficient decreased from 0.58 to 0.46 with the rising of testing temperature from 20 to 600 °C, and then remained nearly constant. The wear mechanism of the alloy was mainly fracture and delamination at low and moderate temperatures, and transformed to adhesive and oxidation at elevated temperatures.  相似文献   

12.
In this paper, Finite Element (FE) and experimental analyses have been developed on the deformation of aluminium billet over a tool. Effect of friction resulted from the use of additive-free ISO460-compliant paraffinic mineral oil with kinematic viscosity of 455.192 mm2/s at 40 °C in amounts of 0.1, 1, 5, and 20 mg were examined. The time behaviour of displacements on the billet in the experiment was used as inputs for the FE model. The FE analysis results for load–displacement behaviour of the extrusion were compared with the experimental results. It was shown that significant differences exist between the four lubricant quantities on friction and contact pressure distribution.  相似文献   

13.
We demonstrate a simultaneous distributed strain and temperature measurement technique with the spatial resolution of 1 mm using fiber Bragg gratings inscribed in a polarization-maintaining and absorption-reducing fiber (PANDA-FBGs) and optical frequency domain reflectometry (OFDR). We conduct four-point bending tests in an environmental chamber. Using high birefringent PANDA-FBGs that are manufactured specifically for the simultaneous measurements, the uniform temperature distributions and the typical strain distribution profiles of the four-point bending tests were successfully obtained. The measurement errors of strain were from −31 με to 19 με, and of temperature were from −0.9 °C to 1.3 °C. The spatial standard deviation was 7.5 με and 0.9 °C. We also discussed the effect of the residual strain of the sensor-bonding procedures and the data averaging.  相似文献   

14.
Fretting fatigue behavior of the sensitized SUS304 stainless steel under a pressurized hot water at 7.3 MPa and 288 °C was investigated. The tests were carried out under a contact pressure of 100 MPa and a frequency of 20 Hz. From the experimental result, combined effect of pressurized hot water and localized high tangential stress due to fretting resulted in nucleation of intergranular crack along the outer edge of contact region at lower stress amplitudes, while a fretting fatigue crack was nucleated at the highest tangential force point independently from these intergranular cracks at higher stress amplitudes. No intergranular crack nucleation was observed for fretting fatigue at the same temperature in air. The higher stress ratio reduced the fatigue strength, where the crack tip was exposed more in corrosive environment due to the high mean stress compared to the lower stress ratio.  相似文献   

15.
《Wear》2006,260(9-10):919-932
The variation in wear behaviour during limited debris retention sliding wear of Nimonic 80A versus Stellite 6 (counterface) between room temperature and 750 °C, at sliding speeds of 0.314, 0.654 and 0.905 m s−1, was investigated. At 0.314 m s−1, mild oxidational wear was observed at all temperatures, due to transfer and oxidation of Stellite 6-sourced debris to the Nimonic 80A and resultant separation of the Nimonic 80A and Stellite 6 wear surfaces. Between room temperature and 450 °C, this debris mostly remained in the form of loose particles (with only limited compaction), whilst between 510 and 750 °C, the particles were compacted and sintered together to form a wear protective ‘glaze’ layer.At 0.654 and 0.905 m s−1, mild oxidational wear due to transfer and oxidation of Stellite 6-sourced debris was only observed at room temperature and 270 °C (also 390 °C at 0.654 m s−1). At 390 °C (450 °C at 0.654 m s−1) and above, this oxide was completely absent and ‘metal-to-metal’ contact resulted in an intermediate temperature severe wear regime—losses in the form of ejected metallic debris were sourced almost completely from the Nimonic 80A. Oxide debris, this time sourced from the Nimonic 80A sample, did not reappear until 570 °C (630 °C at 0.654 m s−1), however, were insufficient to eliminate completely severe wear until 690 and 750 °C. At both 0.654 and 0.905 m s−1, the oxide now preventing severe wear at 690 and 750 °C tended not to form ‘glaze’ layers on the surface of the Nimonic 80A and instead supported continued high wear by abrasion. This abrasive action was attributed to the poor sintering characteristics of the Nimonic 80A-sourced oxide, in combination with the oxides’ increased mobility and decreased residency.The collected data were used to compose a simple wear map detailing the effects of sliding speed and temperature on the wear of Nimonic 80A slid against Stellite 6, at these speeds and temperatures of between room temperature and 750 °C.  相似文献   

16.
The new developed Optical Multimode Online Probe (OMOP) can process images from either incident-light illumination (also called epi-illumination) or transmitted-light illumination (also called trans-illumination). The probe has an outer diameter of 38 mm and the illumination is achieved by high performance Light Emitting Diodes (LEDs) with specifications of 1.96 mm² and 493 lm (251.53 lm/mm²) at an angular deviation of 0.37°. A camera probe is used with either an object-space telecentric (telecentricity <0.2°, 2437 mm virtual pupil distance) or entocentric objective (Köhler based illumination, 6238 mm virtual pupil distance). Using the telecentric mode, the particle distance independency is located within 20 mm while the focal depth is approximately 5 mm. The local resolution is between 20 and 30 μm, according to the used optics, with a standard deviation less than 4.5%. Maximum particle diameter is up to 5 mm while particles can reach up to 2 m/s as function of exposure. The basic distance transform approach with watershed segmentation for analysis of transmitted-light images gives deviations less than 5% at high particle densities and less than 2% at low ones. The error of false positives typically is below 5% while the error of wrong radiuses is below 1% for up to 90% of all droplets and below 5% otherwise. Up to five images per core and second (trans-illumination) can be analyzed automatically and online at densities up to 25% (trans-illumination, gap width less than 5 mm) 40% (object side telecentric epi-illumination, single probe) respectively.The advanced pre-segmentation approach based on the Random Forest Classifier (RFC) is used to perform the more complex image analysis with epi-illumination. As long as the quality of pre-segmentation is high enough, the classification results in images, which can be analyzed in the following distance transform approach. This is considerably depending on the quality of training the algorithm and recurring image features. Compared to the distance transform analysis at low densities the deviation increases. The RFC pre-segmented image gives an additional deviation of 1.1% (both in regard to the total amount of evaluated pixels) and a deviation of 12.9% in regard to the mean particle diameter. Below a particle size of 50 pixels the image analysis overestimates the actual number of particles due to the sensitivity of the Euclidian distance approach.  相似文献   

17.
Reverse saturation current and the ideality factor (η) are the main parameters that affect the performance of a radiation semiconductor detector in different space environmental conditions. We have measured both of these parameters for the Silicon Drift Detector (SDD) used as a radiation detector in the X-ray spectrometry for space borne applications having the active area of 40 mm2 and 109 mm2 with 450 μm thick silicon. The measured reverse saturation current is compared with the theoretically estimated values using diode equation for various detector operating temperatures and shown that there is a strong dependence of reverse saturation current with ideality factor. Subsequently, using the reverse saturation current ratio method, the slope ratio for small area to the large area SDD is derived and compared with the theoretical slope ratio obtained using the measured ideality factor. It is shown that the slope ratios closely match with the diode equation of the form which has the ideality factor in both the product and exponential terms for these SDDs. The measured spectral energy resolution is ∼150 eV at 5.9 keV for both small and large area SDDs when operated at −40 °C and −65 °C respectively. The noise performance of the spectrometer is also measured in terms of Equivalent Noise Charge (ENC) for various detector operating temperatures and shown that the value of ENC in rms noise electrons is minimal for the pulse shaping time of 3.3 μs.  相似文献   

18.
J.S. Peters  B.A. Cook  J.L. Harringa  A.M. Russell 《Wear》2009,266(11-12):1171-1177
Fine-grained TiB2 compacts have been hot pressed to 98–99% theoretical density at 1400 °C. The compacts were consolidated from sub-micron powders prepared by a high-energy ball milling technique. Titanium diboride (TiB2) powders were obtained from the milling of commercially synthesized TiB2 and also from the mechanical alloying (MA) of Ti and B precursors. The formation of TiB2 from Ti and B powders by mechanical alloying was found to reach completion after 3 h, and wear debris from steel mill vials and media introduced 0.8 to 1.5 wt% Fe in the sintered compacts. The dry erosion resistance of the highest density compacts was examined using an ASTM standard test with an abrasive jet of Al2O3 impinging at a normal angle of incidence. Steady-state erosion rates of 0.5 mm3/kg of erodent compare favorably with the measured value of 9 mm3/kg for commercial, fine-grained WC–Co cermets under identical conditions. Microstructures, fracture surfaces, and erosion craters were also examined by electron microscopy.  相似文献   

19.
With recent development in advanced manufacturing, demand for nanometric accuracy in dimensional metrology has increased dramatically. To satisfy these requirements, we propose a high-accuracy micro-roundness measuring machine (micro-RMM) using a multi-beam angle sensor (MBAS). The micro-RMM includes three main parts: the MBAS, a rotary unit, and a bearing system. The MBAS has been designed and established in order to improve motion accuracy of the micro-RMM. The dimensions of the MBAS are 125(L) mm × 130(W) mm × 90(H) mm. Compared with other methods, an MBAS is less susceptible to spindle error (stage-independence) when detecting angles, can maintain high sensitivity with miniaturized size, and can be used conveniently at the factory level. The optical probe, reported in this paper, is based on the principle of an autocollimator, and the stability is improved when using the MBAS. Unlike multi-probe methods, the micro-RMM is constructed to realize roundness measurement by using only one probe, which is less susceptible to instrumental errors. Experimental results confirming the feasibility of the multi-beam angle sensor for roundness measurement are also presented.  相似文献   

20.
A method of enhancing the electrical conductivity of 3,4-ethylenedioxythiophene:poly styrene sulfonate (PEDOT:PSS) by combining solvent treatment (adding high polar solvent: 5 wt% ethylene glycol) and adding a small amount of silver (Ag) nanoparticles in a solution was investigated. The main purpose of this was to apply a PEDOT:PSS conductive layer to micro-thermal devices driven by electricity and, for this, to reduce the layer thickness (for low stiffness) while maintaining necessary high electrical conductivity. Layers with thicknesses of less than about 10 μm were examined for electrical conductivity and temperature when electricity was applied. The solvent treated PEDOT:PSS had suitable electrical resistance to generate appropriate temperature properties. The added Ag nanoparticles reduced the electrical resistance by 30–70% over the measured thickness range. The electric conductivity applied with this method was 200–260 Ω−1 cm−1 for thicknesses of 1–2 μm (conductive area: 12 mm × 10 mm) and the generated temperature increase was 20–50 °C at applied voltages of 3–5 V. These characteristics are considered to be suitable to use the conductive layer as a heating element. In addition, the method we used scarcely degraded the transparency of the layer. Measurements of the conductive area in a layer with conductive atomic force microscope (AFM) indicated that the added Ag nanoparticles contributed to increasing the conductive areas and distributing them more uniformly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号