首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
提出了一种基于四次乘方射频(radio frequency,RF) 信号和级联马赫- 曾德尔调制器(Mach-Zehnder modulator,MZM)的梳 线可调的光学频率梳(optical frequency comb,OFC)产生方案。利用乘方运算电路对正弦RF信号进行运算 耦合,产生的乘方RF信号驱动级联的MZM,调制器对输入光进行调制,从而产生梳线数可 调的平坦 OFC。建立了乘方RF信号驱动级联MZM产生OFC的理论模型,利用OptiSystem软件对其性能 进行了 研究。结果表明,OFC的梳线间隔是RF信号源频率的2倍,可调谐并且拓展了频谱带宽;产 生OFC的 目标梳线数是基准调制电压的4倍,实现了梳线数可调谐;调节MZM上下支臂的调制和偏置电 压差为确 定的优化值,可以使不同目标梳线数的OFC平坦度均小于0.95 dB。  相似文献   

2.
The generation of optical frequency comb (OFC) with novel controlled delay circuit is presented in this study. The proposed OFC is based on a single laser source which is cascadingly connected with three modulators; all the modulators are tailored by RF signal while incorporating no phase shifter or electrical/optical amplifier. The proposed OFC is used as a source at optical line terminal (OLT) of WDM-PON setup, which serves multiple users with a single laser source making OLT side very cost effective. 41 comb lines with over 40 dB tone to noise ratio and high side mode suppression ratio, least amplitude difference of under 0.3 dB, with cost effective setup is an attractive source for WDM-PON system. The frequency spacing is 32 GHz between OFCG lines which provides enough bandwidth for data transmission, the overall bandwidth provided by this scheme is 1.2 THz. Using DPSK modulation technique across each frequency of OFCG, the controlled delay circuit increases the capacity by factor two, whereas by deploying DQPSK modulation technique, it quadrupled the overall capacity in downlink transmission. Thus, the system offers four times increased capacity ∼1.6 Tbps by deploying state of the art technique for modulation and generating OFC with controlled delay. The average power penalty in the downlink and uplink transmission is 2.5 dBm and 3.13 dBm.  相似文献   

3.
The width of an optical frequency comb (OFC) was increased to 30 THz by using self-phase modulation (SPM) in an optical fiber. This value is 2.7 times larger than the maximum OFC span obtained by the OFC generator alone. We compare the resulting spectrum to numerical simulations to confirm that the SPM and the higher order dispersion of the fiber contribute to broaden the spectral profile  相似文献   

4.
A span up to 50 THz of optical frequency comb (OFC) has been obtained by self-phase modulation in an optical fiber. The coherent nature of the process was verified by heterodyne-detecting the sidebands offset by up to 12 THz from the carrier. The signal-to noise ratio (SNR) of the beat signal between a sideband at 12 THz offset and another single-mode laser was 32 dB in a 1-MHz bandwidth. Although the linewidth of each beat signal was maintained within a few megahertz, phase noise pedestal power increased with the offset frequency  相似文献   

5.
In this paper, a dynamic optical arbitrary waveform generator (OAWG) based on cross phase modulation (XPM) is proposed. According to the characteristics of XPM, the nonlinear phase shift of signal can be changed along with the pump power. The amplitude of signal can be changed by controlling the phase shift at one arm of a Mach-Zehnder interferometer (MZI) using XPM effect between signal and pump. Therefore, the phase and amplitude of the optical frequency comb (OFC) can be controlled by two pump arrays. As a result, different kinds of waveforms can be synthesized. Due to the ultrafast response of XPM, the generated waveform could be dynamically updated with an ultrafast frequency. The waveform fidelity is affected by the updating frequency.  相似文献   

6.
刘鹏飞  任麟昊  闻浩  施雷  张新亮 《红外与激光工程》2022,51(5):20220381-1-20220381-18
光学频率梳是由一系列离散且等间隔分布的频率成分所组成的光谱结构,作为光谱分析的天然刻度尺,其已广泛应用于光谱学、精密测量、光通信、传感等多个领域。光学频率梳根据其产生技术可分为基于锁模激光器的光学频率梳、克尔微腔光学频率梳、电光频率梳。电光频率梳由于其频率间隔可调、梳齿功率较高、可实现微波到光波的转换等优势,得到了充分发展。但传统电光频率梳的产生器件存在体积大、功耗高的缺点,限制了其进一步应用。随着微纳加工技术的不断发展,越来越多的材料应用于片上集成光学器件,包括硅、氮化硅、氮化铝、磷化铟、铌酸锂、砷化铝镓等。集成电光频率梳器件具有体积小、功耗低等优势,是构建光电集成芯片的重要器件。文中旨在对集成电光频率梳的研究现状进行综述,首先介绍光学频率梳的类型,并详细论述电光频率梳的产生机制;其次介绍产生集成电光频率梳的材料平台、相应的光梳性能指标及其应用;最后基于目前集成电光频率梳领域存在的问题,对未来的研究趋势做出展望。  相似文献   

7.
窦玉杰  张洪明  姚敏玉 《中国激光》2012,39(12):1205006-136
提出并实验验证了一种基于光频梳的超短光脉冲的产生方法。使用强度调制器和相位调制器级联直接调制直流激光得到了29条顶部功率变化小于1.5dB的光频梳。利用单模光纤色散将光频梳整形成重复频率为10GHz,脉宽为2.68ps的光脉冲。并成功用于对1~4GHz信号采样,系统的信噪比可达33.83dB,等效于5.33bit的有效比特数。  相似文献   

8.
An approach for generating optical frequency comb (OFC) with tunable free spectral range (FSR) is proposed. Two Mach-Zehnder modulators (MZMs) driven by phase-shifted sinusoidal signals are cascaded to generate OFC with plentiful comb lines and the FSR controlled by the drive frequency. Subsequently, a linearly chirped fiber Bragg grating (LCFBG) and a phase modulator (PM) are used to increase the comb FSR by a particular integer multiple. Therefore, by simultaneously controlling the drive frequency of MZMs, the dispersion amount of the LCFBG and the drive signal of the PM, an OFC with desired FSR can be achieved.  相似文献   

9.
An optical frequency comb (OFC) generator was realized for accurate optical frequency difference measurement of 1.5 μm wavelength semiconductor lasers by using a high frequency LiNbO3 electrooptic phase modulator which was installed in a Fabry-Perot cavity. It was confirmed that the span of the OFC was wider than 4 THz. By using semiconductor lasers whose spectrum linewidths were narrowed to 1 kHz and a sensitive optical balanced-mixer-receiver for measuring beat signal between the sideband of the comb and the laser, we demonstrated a frequency difference measurement up to 0.5 THz with a signal-to-noise ratio higher than 61 dB, and a heterodyne optical phase locking with a heterodyne frequency of 0.5 THz in which the residual phase error variance was less than 0.01 rad2. The maximum measurable frequency difference, which was defined as the sideband frequency with the signal-to-noise ratio of 0 dB, was estimated to be 4 THz  相似文献   

10.
The limit of optical frequency comb (OFC) generation (i.e., the limit of frequency difference measurement) due to the material dispersion in the EO crystal is experimentally studied. By using a modified monolithic OFC generator, we observed the OFC spectrum, and confirmed that the envelope of the OFC around 780 nm extended to a span as wide as 16 nm (or 7.6 THz) reaching the limit of the OFC generation. We also proposed a method of stabilizing the Fabry-Perot cavity for the monolithic OFC generator  相似文献   

11.
为提高光频梳带宽和谱线平坦度,设计了一种基于偏振复用和电吸收调制(EAM)技术的光频梳产生方 案。通过调整EAM 参数产生除中心载波外的高平坦度光频梳,再结合偏振复用技术优化中心载波峰值功率,使得光频 梳带宽整体提升一倍。文中讨论了相关参数对光频梳平坦度的影响,利用Optisystem 软件搭建了基于该方案的微波频 率可调载波重用全双工光载无线系统(RoF)。研究结果表明,在下行链路中当误码率为10-9 时,传输10 km 与背靠背 传输相比功率代价仅为0.42 dB。  相似文献   

12.
An ultra-wide and flat optical frequency comb (OFC) generation scheme using multiple continuous wave (CW) light sources based on electro-absorption modulator (EAM) and frequency modulator (FM) is proposed. In the scheme, each CW light source is broadened and modulated by the first EAM and FM, respectively. The second EAM is introduced to flatten the ultra-wide OFC lines. By setting the wavelength spacing of light sources equal to the bandwidth of sub-OFC, an ultra-wide OFC can be obtained. Principle analysis and simulation for the scheme are performed. The results show that in the case of a single light source, a tunable and flat OFC is obtained. With the increase of light sources, the bandwidth of the generated ultra-wide OFC expands rapidly. In the case of 28 light sources, a 22 GHz ultra-wide OFC with bandwidth of 16.52 THz can be generated.  相似文献   

13.
We have investigated the wavelength conversion techniques for differential phase-shift keying (DPSK) modulation formats in 10 Gb/s transmission systems, compared with the non-return-to-zero (NRZ) modulation format. For the wavelength conversion of DPSK modulation formats, we employed the wavelength converters based on the four-wave mixing (FWM) in semiconductor optical amplifiers (SOAs) and the frequency comb generated by phase modulation. The power penalty at 10/sup -9/ bit error rate was used as a measure of the system performance degraded by the wavelength conversion. Our simulation results show that the DPSK modulation formats have a smaller power penalty than the NRZ modulation format for the wavelength conversion using the FWM effect in an SOA due to a much lower pattern effect. However, as the wavelength conversion uses the frequency comb generated by phase modulation, it has a similar power penalty compared with the NRZ modulation format. It is also shown that the DPSK modulation formats are possible to obtain the power penalty less than 0.4 dB for both wavelength conversion techniques.  相似文献   

14.
A novel approach to generate the flattened optical frequency comb (OFC) with tunable frequency spacing is proposed. The proposed generator consists of two cascaded polarization modulators driven by two radio frequency signals with different frequencies. By adjusting the parameters, 9, 12, and 16 comb lines can be generated with tunable frequency spacing. The scheme requires no DC bias voltage of the modulators and no optical filter, which makes our method simple and stable. A concept proof simulation is conducted to confirm the feasibility of the generation schemes of the 9-, 12-, and 16-line OFCs.  相似文献   

15.
孙帼丹  王荣  蒲涛  郑吉林  熊锦添  方涛  甄飞 《中国激光》2012,39(12):1205002-114
提出了利用叠印啁啾光纤布拉格光栅(S-CFBG)实现宽谱微波信号光子信道化接收的方法。利用一个S-CFBG产生光频梳(OFC),接收的微波信号被强度调制器调制到OFC的各个载波上。第二个S-CFBG对不同的边带进行滤波,利用波分复用(WDM)解复用器进行信道分离,实现对宽谱微波信号频率的实时测量。该方法还可以同时检测不同射频(RF)载波上所携带的数据信息,无需传统的电本振源阵列,简化了系统结构。建立了测量范围为0~20GHz,测量精度为0.5GHz的宽谱微波信号信道化接收仿真系统。实现了不同RF频率上携带信息的实时同步检测,并对接收误码性能进行了分析。  相似文献   

16.
We report the first demonstration of a monolithic optical-frequency comb generator. The device is based on multisection quaternary/quaternary eight-quantum-well InP-InGaAsP material in a frequency-modulated (FM) laser design. The modulation is generated using quantum-confined Stark-effect phase-induced refractive index modulation to achieve fast modulation up to 24.4 GHz. The laser was fabricated using a single epitaxial growth step and quantum-well intermixing to realize low-loss phase adjustment and modulation sections. The output was quasicontinuous wave with intensity modulation at less than 20% for a total output power of 2 mW. The linewidth of each line was limited by the linewidth of the free running laser at an optimum of 25 MHz full-width at half-maximum. The comb generator produces a number of lines with a spacing exactly equal to the modulation frequency (or a multiple of it), differential phase noise between adjacent lines of -82 dBc/Hz at 1-kHz offset (modulation source-limited), and a potential comb spectrum width of up to 2 THz (15 nm), though the comb spectrum was not continuous across the full span.  相似文献   

17.
The frequency response of an InGaAs PIN photodiode and the ratio of the frequency modulation (FM) index to the intensity modulation (IM) index of a 1.5 ?m InGaAsP vapour-phase-transported DFB laser diode have been measured by an optical heterodyne measurement technique. From the response of the photodiode to the laser radiation beat frequency, a 20 GHz detector bandwidth is determined. The ratio of the FM and IM indices at 3 mW laser output power per facet decreases from 60 at 100 MHz modulation frequency to 3.3 above 2 GHz.  相似文献   

18.
Optical frequency combs have emerged as an important tool enabling diverse applications from test-and-measurement,including spectroscopy,metrology,precision distance measurement,sensing,as well as optical and microwave waveform synthesis,signal processing,and communications.Several techniques exist to generate optical frequency combs,such as mode-locked lasers,Kerr micro-resonators,and electro-optic modulation.Important characteristics of optical frequency combs include the number of comb lines,their spacing,spectral shape and/or flatness,and intensity noise.While mode-locked lasers and Kerr micro-resonators can be used to obtain a large number of comb lines compared to electro-optic modulation,the latter provides increased flexibility in tuning the comb spacing.For some applications in optical communications and microwave photonics,a high degree of integration may be more desirable over a very large number of comb lines.In this paper,we review recent progress on integrated electro-optic frequency comb generators,including those based on indium phosphide,lithium niobate,and silicon photonics.  相似文献   

19.
Femtosecond laser-frequency comb techniques are vastly simplifying the measurement and synthesis of optical frequencies. A single mode-locked femtosecond laser, with its spectrum broadened by self-phase modulation in a microstructured or tapered nonlinear fiber, can produce millions of sharp laser lines in a precise evenly spaced grid spanning much of the visible and near-infrared spectrum. The absolute frequency of each line is determined by two observable radio-frequency signals. The pulse repetition rate gives the spacing of the comb lines and the rate at which the phase of the lightwave slips, relative to the intensity envelope from pulse to pulse determines the offset frequency by which each line is displaced from a precise integral multiple of the repetition frequency. This offset frequency can be measured most easily if the comb spans more than an optical octave so that one can observe a radio frequency beat note between the second harmonic of the infrared comb lines with the corresponding comb lines at the blue end. Such an optical-frequency synthesizer makes optical oscillations readily countable and provides the long-awaited compact optical clockwork for an all-optical clock  相似文献   

20.
介绍了2005年诺贝尔物理学奖的获奖工作-用锁模飞秒激光光梳去测量光的频率.飞秒激光光梳技术大大简化了光频的测量.锁模飞秒激光通过光子晶体光纤时,由于自相位调制,在可见光和近红外区能够产生上百万等间隔的梳状频率,其频率间隔等于锁模脉冲的重复率.利用光频梳和倍频技术,把对光频的测量变为对射频的测量,这样就能够很容易地测出光的频率.使得光频测量精度和原子钟精度达到前所未有的高度,从而对物理学和计量学的发展有重要意义.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号