首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 312 毫秒
1.
滨海新区新建地铁Z2线运行最高时速可达120 km,大于城市中运行的普通地铁列车时速(60~80 km),高速地铁荷载相较于普通列车荷载有着频率高、幅值大的特点,所造成的环境振动也有所不同。本研究以天津市Z2地铁线一期工程作为实例,依托实际工程数据,利用大型通用有限元软件ABAQUS,建立轨道–隧道–地基–建筑物三维有限元模型,并结合ABAQUS自带子程序DLOAD模拟移动荷载,利用动力隐式分析针对天津滨海新区饱和软土地带快速地铁运营对沿线构建筑物的振动影响进行分析。并且对比3种基础形式–桩基础、筏板基础与条形基础的建筑结构在不同列车速度和隧道埋深工况下的振动反应规律。研究结论可为今后地铁工程沿线振动预测和评估提供指导。  相似文献   

2.
为研究地铁列车运营荷载对大直径盾构隧道横断面的变形影响,建立列车-轨道-隧道-土层系统耦合振动模型,列车-轨道动力学模型和隧道-土层有限元模型通过扣件力进行参数传递.研究结果表明:隧道竖向变形与水平变形变化规律同荷载变化之间具有一定的对应关系,且存在一定时差;列车荷载作用下隧道断面竖向增大、横向收敛,隧道呈“竖鸭蛋”变形,变形值量级较小.  相似文献   

3.
地铁列车荷载作用下软土地基会产生沉降,如工后沉降和不均匀沉降等,影响其使用性能和使用寿命。为研究不同速度地铁列车荷载作用下软土地基的沉降特性,采用有限元软件ABAQUS建立三维动力有限元模型,对比分析了常规时速(80 km/h)和较快时速(120 km/h)下土体的沉降规律,并结合理论经验修改公式预测地铁运营工后沉降量。研究结果表明:列车运行速度越大,隧道下卧土体的波动越大,沉降曲线轮轨分布现象越明显,地表沉降槽的横向影响范围也越大,约为隧道轴线两侧各4.5倍隧道直径,但其工后沉降随地铁行车速度的增大而减小;在快速地铁列车荷载作用下土体竖向沉降的影响范围为3倍隧道直径;线路运营后一年沉降量约为57mm,占累积沉降量的30%,20年后的累计沉降量约为190 mm。  相似文献   

4.
地铁在运营过程中列车对隧道会造成长期的振动荷载,这种荷载不仅造成了周围土体的扰动,而且当作用于软土时还会造成一定的沉降。结合上海地铁1号线的工程实际,分析了振动荷载对隧道周围土体长期变形性状的影响规律,并计算由此引起的隧道沉降量。分析结果证明,在软土地层中,长期振动荷载对地铁隧道沉降有较大影响。  相似文献   

5.
近年来,由于城市地铁公共交通模式具有大容量、高速、安全、可靠的特点,逐步发展成为解决日趋紧张的城市交通问题的首选方法。随着城市地铁建设的逐步深入,地铁区间不可避免会下穿地表建筑物或公共交通。地铁隧道下穿既有地表有轨电车线路时,既要保证隧道的施工安全,又要保证既有电车线路的运营安全。大量的地铁隧道工程实践表明,城市隧道施工势必会引起隧道上方地层变形和沉降。当土体发生沉降时,轨道的多支座超静定系统也遭到破坏。在列车的动荷载作用下,支撑面下沉带着轨道产生较大变形量。土体沉降过大时会影响线路的平顺性能,影响列车运营效果,而且还导致轨道中应力大大升高,可使轨道断裂,甚至造成出事故。因此,经研究、论证及实验分析,采用双排小导管超前支护及施加工字钢临时仰拱以保证暗挖隧道安全顺利的通过有轨电车道床。  相似文献   

6.
粉细砂层对于地铁小曲线运营中循环荷载的响应较为敏感,特别是列车行驶时对轨道产生离心力等问题尤为严重,而郑州大部分地区属于黄河冲积粉细砂层,因此地铁在长期运营状态下,由于粉细砂土层的动力响应导致的砂土层沉降,给列车运行带来较大隐患。本文进行了长期孔隙水监测,并利用MIDAS有限元计算平台建立地铁道床—衬砌—土体耦合动力模型进行相互验证,研究了土体在地铁列车长期循环荷载作用下造成不均匀沉降的原因,以此为基础阐述隧道底部土层的变形发展规律。发现了孔隙水压力和超孔隙水压力在列车运行过程中的变化规律以及隧道周围土层振动响应规律,表明隧道下方土体发生液化的可能性很低;孔压和超孔压在列车运行初期较大,后期逐渐稳定。  相似文献   

7.
采用三维数值模拟方法和动网格技术对地铁列车以高速通过不同断面地铁隧道时的空气动力学效应进行了分析,得到了车体表面的压力变化情况,由车外压力换算得到了车内压力。参考美国地铁压力舒适度标准选取了最优断面;针对单体隧道和普通区间隧道2种情况,给出了时速100~140km/h时不同动态密封指数下,B型和A型地铁列车的隧道空气动力学效应断面优化取值,可供城市高速地铁隧道设计参考。  相似文献   

8.
高铁隧道衬砌拱顶空洞对列车荷载响应研究   总被引:1,自引:0,他引:1  
以某高速铁路某一隧道存在拱顶空洞为工程背景,基于高速列车振动荷载实测数据和列车振动理论,利用ABAQUS有限元软件,建立隧道衬砌拱顶不含空洞与含有不同深度空洞的隧道结构有限元模型,施加相应的约束及边界条件,对隧道结构在列车振动荷载作用下的动力响应行为进行数值仿真分析。研究结果表明,随空洞深度的增加,拱顶含空洞的衬砌结构将会使原有衬砌受力状态发生改变,空洞深度越大,围岩塑性区改变越明显,衬砌整体受力越不利;不含空洞的隧道衬砌关键点与轨道距离越近振动响应越明显,拱顶响应最弱;衬砌拱顶空洞深度对列车振动响应明显,随深度的加大,其响应越剧烈,使衬砌围岩塑性区发生进一步扩展并最终影响到隧道结构的整体稳定性,对列车运营安全造成威胁。研究结果对于进一步探索含缺陷隧道衬砌结构的劣化动力学行为奠定了基础。  相似文献   

9.
 利用弹性波理论,分析适于分层地基的黏弹性人工边界;以处于岩石中的青岛地铁三号线为研究对象,采用有限元方法建立环境振动计算模型,针对不同岩层弹性模量、隧道埋深、衬砌厚度对地铁运行所致环境振动响应的影响规律进行研究。研究结果表明,不同深度岩层弹性模量的变化对地铁振动所致环境响应的影响不同;在弹性模量较大岩石介质中地铁引起的自由地表振动垂向加速度只有隧道顶部正上方一个放大区;地铁对自由地表的振动响应随隧道埋深减小而增大;衬砌厚度对地铁振动环境响应影响较小。  相似文献   

10.
地铁引起城市环境振动Z振级的试验研究   总被引:2,自引:0,他引:2  
给出了广州地铁一号线运营时沿线地表环境振动测试结果,并根据实测结果提出了地铁对城市环境振动Z振级的经验公式。  相似文献   

11.
 为预测和分析高速列车运行产生的轨道和路堤振动及波动在沿线周围地基中的传播,利用2.5维有限元方法建立了轨道、路堤和下卧层地基在移动荷载作用下的动力耦合分析模型及无路堤情况下的轨道地基模型,求解三维地基的动力响应。对高速或低速运行的列车多轮重荷载产生的路堤和地基振动进行对比分析。通过参数化分析明确轨道刚度、路堤高度、地基土的剪切波速及阻尼系数、列车速度和振动频率等参数对地基振动和传播特性的影响。给出的方法和结论可用于分析软土地基上运行高速列车时的稳定性问题和评估列车运行对周围环境的振动影响。  相似文献   

12.
针对地铁列车振动环境影响的预测问题,提出了一种新型的深孔激振实测传递函数预测方法。本方法采用高精度车轨耦合解析模型求解振源输入力序列,通过现场原位深孔内激振实测获取地层振动传递函数序列,通过精细化有限元模型求解隧道结构修正函数序列,然后将3部分在频域内进行对应叠加运算求得地铁运行引起的地表振动响应。为了验证该预测方法,研制了可以用于深孔激振的新型设备,并在现场施工了15m埋深的激振孔,在其内部进行脉冲激励实测了地表传递函数序列,然后带入本方法预测流程进行地表振动响应预测。选取北京地铁某线类似条件地点的地表加速度实测数据进行对比验证,结果表明:预测结果和现场实测时域峰值均为0.08m/s2,振动主频均为40~70Hz,1/3倍频程谱的量级和变化规律基本一致,Z振级接近。表明本预测方法预测精度高,频谱特性好,可以对地铁列车运行时的地表振动响应进行精确预测。  相似文献   

13.
针对上海地铁运行引起地面振动的预测问题,应用振源模型计算不同车速对轨道基础的激振力,应用传播模型计算不同激振力输入下的地面振动加速度,建立了“地铁-隧道-土层”系统动力有限元模型。通过对比数值模拟结果与实测结果,分析了不同因素对地铁引起地面振动的影响规律。结果表明:随着地铁车速增加,振源激振力和地面振动加速度的幅值均明显增大;地面上距地铁中心线30 m范围内各点振动加速度峰值随距地铁中心线距离由近及远呈幂函数形式衰减;地面振动加速度频率主要为低频振动,随着距地铁中心线距离的增大,高频衰减相对于低频更为明显;建议上海地区建筑尽量在地铁中心线20 m范围外进行规划,或采取降低设计车速、减轻车辆荷载、优化隔振措施等方法,减少地铁运行引起地面振动对地面建筑及居民生活的影响。  相似文献   

14.
 建立列车–轨道–地基相互作用模型,将轨道简化为铺设在地基上的欧拉梁,推导轨道不平顺条件下列车荷载的半解析隐式表达式。将填充沟视为地基中的异质体,推导内含异质体弹性半空间的2.5维有限元法表达式。分析列车在低速和高速运行条件下填充沟对不平顺列车动荷载作用下地基振动的隔振效果,分析参数包括沟宽、沟深、沟距及填充料。研究结果表明:列车高速运行时,填充沟的隔振效果较好;增加沟深及沟宽均可增加填充沟的隔振效果;沟前地表出现一定范围的振动增强区,沟深越深,沟宽越宽,振动增强越明显;非刚性材料由于具有较大的材料阻尼作用,在沟前及沟后都有较好的隔振效果。相关成果可为列车产生环境振动的理论分析和工程应用提供参考。  相似文献   

15.
为了研究地铁车辆段上盖建筑车致振动机理,对杭州某地铁车辆段试车线上盖建筑的振动进行了试验研究。基于环境激励分析了上盖建筑楼板的动力特性,研究了不同车速下地铁车辆段上盖建筑的车致振动特性和传播规律,结合中国环境振动评价标准对建筑物室内的振动舒适度进行了评价。结果表明:上盖建筑楼板一阶频率在28~46 Hz之间,阻尼比为0.3%~1%; 上盖建筑物的车致振动主要分布于0~140 Hz之间,10~25 Hz以内的低频振动表现为结构的整体振动,沿层高有放大的趋势,不同车速下楼板振动频率分布类似,都主要集中在楼板的自振频率附近; 随列车加载车速的降低,地铁上盖建筑中的整体振动强度呈下降趋势,部分楼板的最大Z振级及分频振级均出现“反弹”现象; 试车线列车以超过35 km·h-1的车速运行时上盖建筑中楼板的实测最大Z振级超过了标准限值,为保证试车线列车功能同时提高上盖建筑的振动舒适度,有必要在已有轨道减振的基础上对上盖建筑物进一步采取减振隔振措施。  相似文献   

16.
 对秦沈客运专线列车引起地基振动进行现场测试,通过对实测数据的时频分析,得到一个由轨道不平顺引起的基频。推导考虑轨道不平顺条件下列车动荷载的简化解析解,基于波数有限元理论推导动荷载作用下地基动力响应的柔度矩阵。以现场实测数据为依据,建立列车–轨道–地基振动模型,以推导的列车荷载为输入,计算轨道不平顺条件下列车运行引起的地基振动。分析不平顺幅值、波长以及车速对动态轮轨力的影响;研究层状地基上多轮荷载作用产生的动力响应,讨论车速变化对地基振动的影响。研究结果表明:所提出计算模型可以高效地预测轨道不平顺引起的地基振动;不平顺波长与列车运行速度一定时,轨道不平顺幅值越大,地基振动响应和轮轨作用力越大;不平顺幅值与列车运行速度一定时,不平顺波长越长,地基振动加速度和动态轮轨作用力越小;轨道不平顺波长与不平顺幅值一定时,车速越大振动加速度越大。  相似文献   

17.
列车移动荷载下高速铁路板式轨道路基的振动特性和动力荷载传递规律对高速铁路的设计和运行维护十分重要。介绍了一种全比尺的高速铁路板式轨道路基模型和可模拟真实列车荷载高速移动的分布式加载系统,最高模拟列车速度可达360 km/h。基于该模型试验平台,对中国高速列车以不同速度运行下板式轨道路基的振动和动应力特性进行了试验研究。结果表明轨道结构的振动随着车速的提高近似呈线性增加的趋势;路基结构的振动存在阶段性,列车速度低于180 km/h时振动速度增长缓慢,而后随着速度的增加迅速增大;基床表层的碎石层对振动在路基中的传播有很好的吸收作用。试验发现,尽管无砟轨道路基表面的动应力水平远低于有砟轨道,但无砟轨道路基动应力沿深度的衰减速度要缓于有砟轨道。试验进一步发现,无砟轨道路基动应力的增长模式与列车速度和土体所处深度均有关,基于试验结果提出了用于预测高速铁路路基动应力的经验表达式。  相似文献   

18.
针对京沪高铁沿线某高架火车站的振动舒适度问题,建立高架车站结构的有限元模型,充分考虑桥墩桩和土的相互作用,输入高铁列车的行驶荷载,计算结构振动在时域内的动力响应。基于目前常用的国际标准,评价各楼层的舒适度。  相似文献   

19.
2.5维有限元分析饱和地基列车运行引起的地面振动   总被引:7,自引:0,他引:7  
从饱和土的Biot波动方程出发,通过对时间的Fourier变换得出频域内的波动方程,再结合边界条件利用Galerkin法推导出频域内的u–p格式的有限元方程。把轨道视为饱和地基上的Euler梁,通过沿轨道方向的波数变换将三维空间问题降为平面应变问题。将平面应变问题解答沿轨道方向进行波数扩展,最后通过快速Fourier逆变换求得三维时域–空间域内的地面振动响应。假设体波波阵面为半圆柱形式,推导出了适合饱和多孔介质2.5维有限元的黏弹性人工边界。验证了计算模型。结果表明:车速低时,弹性介质的竖向位移大于饱和介质;高速时,饱和介质竖向位移大于弹性介质。车速略微超过饱和土剪切波速时地面产生振动增大现象,随车速进一步增加位移幅值又逐渐减小,但随距离的增加衰减变慢,且得出了不同车速时孔隙水压力随深度的变化曲线。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号