首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, the robust attitude control scheme is developed for near space vehicles (NSVs) with time-varying disturbances based on backstepping technique. To efficiently handle the time-varying disturbance and the system uncertainty, the disturbance observer is employed to estimate them. Using backstepping technique and the disturbance observer output, the robust attitude control is firstly developed for the NSV. And then, considering the actuator dynamics, another robust attitude control scheme is proposed for the NSV based on the disturbance observer. The uniformly ultimate bounded-ness of all closed-loop signals are guaranteed via Lyapunov analysis under both developed robust attitude control schemes. Finally, simulation results are presented to illustrate the effectiveness of the proposed attitude control schemes.  相似文献   

2.
杨青运  陈谋 《控制理论与应用》2016,33(11):1449-1456
针对近空间飞行器姿态控制中出现的执行器故障,输入饱和与外部干扰等问题,设计了一种基于二阶滑模干扰观测器和辅助系统的鲁棒容错跟踪控制方法.首先,将系统不确定,外部扰动和执行器故障作为复合干扰,设计super-twisting二阶滑模干扰观测器对其进行估计.然后为解决输入饱和问题构造了辅助分析系统,并借助backstepping方法,设计姿态容错跟踪控制器.利用Lyapunov方法,严格证明了所有闭环系统信号的收敛性.最后将所设计的控制方法应用于近空间飞行器姿态控制中,仿真结果验证了该控制方法的有效性.  相似文献   

3.
针对多变量、不稳定的近空间飞行器姿态系统,在系统存在参数不确定和外部干扰的情况下,并考虑执行器动态和输入受限,提出一种鲁棒可重构跟踪控制策略.首先,利用二阶滑模干扰观测器分别重构姿态、角速率回路的复合干扰;其次,采用鲁棒二阶滑模积分滤波器的反推(backstepping)方法避免了控制器设计中微分项膨胀问题,利用鲁棒项抵消重构误差对系统的影响,以实现姿态控制器设计.然后,在考虑执行器动态、输入受限及舵面卡死故障下,给出一种线性矩阵不等式的在线优化舵面分配算法,以实现飞行器的姿态角渐近跟踪期望的制导指令.最后,仿真结果表明所提出的方法具有良好的跟踪控制性能.  相似文献   

4.
In this article, a robust adaptive neural dynamic surface control is proposed for a class of time-delay nonlinear systems preceded by saturated hystereses. Compared with the present schemes of dealing with time delay and hystereses input, the main advantages of the proposed scheme are that the prespecified transient and steady-state performance of tracking error can be guaranteed, the computational burden can be greatly reduced and the explosion of complexity problem inherent in backstepping control can be eliminated. Moreover, the utilisation of saturated-type Prandtl–Ishlinskii model makes our scheme more applicable. It is proved that the new scheme can guarantee all the closed-loop signals semiglobally uniformly ultimate bounded. Simulation results are presented to demonstrate the validity of the proposed scheme.  相似文献   

5.
针对无人直升机姿态与高度系统存在未知外部干扰、输入饱和、姿态与高度约束等问题, 本文提出一种具 有输入输出约束的预设性能安全跟踪控制方法. 首先, 针对无人直升机的姿态与高度约束, 通过设计一类边界保护 算法, 构建了新的安全期望跟踪信号. 为了保证系统对于安全期望跟踪信号的跟踪性能, 将预设性能函数与边界保 护算法进行结合, 并对跟踪误差进行转换. 针对系统的输入饱和现象, 使用Sigmoid函数进行逼近; 同时, 针对饱和函 数的逼近误差与未知外部干扰构成的复合干扰, 采用参数自适应方法对其上界进行逼近. 然后, 结合反步控制方法 设计了安全跟踪控制器, 并通过Lyapunov稳定性理论证明了闭环系统所有信号的收敛性, 保证了无人直升机的安全 跟踪性能. 最终, 通过数值仿真验证了所提控制方法的有效性.  相似文献   

6.
沈智鹏  曹晓明 《控制与决策》2019,34(7):1401-1408
针对输入受限条件下四旋翼飞行器的轨迹跟踪控制问题,考虑系统存在模型动态不确定和未知外界干扰的情况,提出一种模糊自适应动态面轨迹跟踪控制方法.该方法设计干扰观测器估计位置模型中复合扰动项,利用模糊系统逼近姿态模型中不确定项和外界干扰,并引入双曲正切函数和辅助系统处理输入受限问题,结合反演法和动态面技术设计轨迹跟踪控制器,以降低控制算法的复杂性,最后选取李雅普诺夫函数证明闭环系统所有信号一致最终有界.应用大疆M100飞行器模型进行仿真验证,结果表明所设计的控制器能够有效处理模型动态不确定和未知外界干扰问题,避免飞行器工作过程中因输入饱和导致执行器失效现象,精确地完成轨迹跟踪控制任务.  相似文献   

7.
针对小卫星在轨运行中存在输入饱和、干扰力矩与执行器故障的姿态跟踪控制问题,提出了一种反步自适应滑模变结构鲁棒容错控制方法。该方法将反步控制和滑模控制相结合,利用自适应算法估计执行器有效因子最小值和干扰上界,避免了对故障的检测与隔离,实现了输入饱和、干扰和故障对系统稳定性影响的抑制。基于Lyapunov方法从理论上证明了闭环系统的稳定性;将该方法用于小卫星的状态跟踪控制,仿真结果表明该控制器能有效处理姿态控制时输入饱和受限的约束,对部分失效和偏差型故障具有较强的容错能力,并具有一定鲁棒性。  相似文献   

8.
In this paper, we consider the robust adaptive tracking control of uncertain multi-input and multi-output (MIMO) nonlinear systems with input saturation and unknown external disturbance. The nonlinear disturbance observer (NDO) is employed to tackle the system uncertainty as well as the external disturbance. To handle the input saturation, an auxiliary system is constructed as a saturation compensator. By using the backstepping technique and the dynamic surface method, a robust adaptive tracking control scheme is developed. The closed-loop system is proved to be uniformly ultimately bounded thorough Lyapunov stability analysis. Simulation results with application to an unmanned aerial vehicle (UAV) demonstrate the effectiveness of the proposed robust control scheme.   相似文献   

9.
本文提出一种将系统浸入和流形不变(I&I)自适应控制方法与L2-增益抑制鲁棒控制方法相结合的静止无功补偿器(SVC)的非线性鲁棒自适应控制方法.所提方法首先通过参数估计误差和鲁棒控制律的设计,使得所构造的表示参数估计误差函数的流形不变且吸引,从而使参数估计误差在这一流形上收敛于零.然后,通过所设计的可调参数对参数估计误差的收敛性能进行控制,以此来保证参数估计器对不确定参数的自适应估计能力.最后,采用自适应逆推算法推导鲁棒控制律,并通过使不确定外部扰动满足从输入到输出的耗散性来保证系统对不确定扰动的鲁棒性.仿真结果表明,利用所提方法设计的SVC控制器和参数替换律在参数估计、发电机功角动态响应方面优于传统自适应逆推算法,从而提高了输电系统的稳定水平.  相似文献   

10.
To achieve high-performance sensorless speed control for the interior permanent magnet synchronous motor (IPMSM) drive system, a terminal sliding mode observer based robust backstepping control is proposed in this paper. Firstly, an integral-type terminal sliding mode observer is designed to replace the real mechanical sensor to obtain the rotor position and speed information. Stability of the observer is guaranteed. Then, a robust backstepping controller with integral and sliding mode actions is designed to achieve speed regulation despite uncertainties and disturbances. The convergence for the backstepping control system is ensured. Finally, the sufficient conditions for input-to-state stability (ISS) property of the observer-controller closed-loop system are also analyzed. Simulation and comparison results have demonstrated the effectiveness of the proposed sensorless control scheme.  相似文献   

11.
This paper investigates the attitude control of spacecraft in the presence of unknown mass moment of inertia matrix, external disturbances, actuator failures, and control input constraints. A robust adaptive controller is proposed with the utilization of fuzzy logic and backstepping techniques. The unit quaternion is employed to describe the attitude of spacecraft for global representation without singularities. The system uncertainty is estimated by introducing a fuzzy logic system. The adaptive mechanism has only two parameters to be adapted on-line because the adaptive law of the proposed controller is derived from the norm of the weight matrix. The stability of the closed-loop system is guaranteed by Lyapunov direct approach. Results of numerical simulations state that the proposed controller is successful in achieving high attitude performance in the presence of parametric uncertainties, external disturbances, actuator failures, and control input constraints.  相似文献   

12.
具有输入饱和的近空间飞行器鲁棒控制   总被引:1,自引:0,他引:1  
针对近空间飞行器这一类存在外部扰动,输入饱和和参数不确定的多输入多输出线性系统,提出了一种基于干扰观测器的抗饱和鲁棒控制方案.将干扰观测器与抗饱和控制技术相结合,从而消除系统存在的未知外部扰动、输入饱和和不确定性对系统控制的影响.首先,设计干扰观测器对线性外部系统产生的未知扰动进行估计.然后根据干扰观测器输出,通过超前抗饱和方法设计抗饱和补偿器,并将其加入到鲁棒控制器的设计中,保证闭环系统存在输入饱和、未知外部扰动和参数不确定情况下的稳定性.为便于设计,干扰观测器、抗饱和补偿器和控制器设计矩阵均通过求解线性矩阵不等式得到.最后,将提出的鲁棒抗饱和控制方法应用于近空间飞行器,仿真结果验证了该控制方案的有效性.  相似文献   

13.
In this paper, a boundary control scheme based on the partial differential equation (PDE) model is proposed for the vibration control problem of the flexible manipulator with input constraints and external disturbances. Based on the backstepping method, two boundary controllers are designed to stabilize the position loop subsystem and the attitude loop subsystem, respectively, and auxiliary systems based on the smooth hyperbolic tangent function and Nussbaum function are designed in the controllers to deal with the input saturation and external disturbances. The Nussbaum function can overcome the difficulties in controller design and stability analysis caused by the derivatives of smooth hyperbolic tangent functions. The well-posedness of the closed-loop system is proven by employing the semigroup theory, and the uniformly bounded stability is proved by Lyapunov direct method. Finally, the performance of the proposed control laws is verified by numerical simulations.  相似文献   

14.
This paper addresses the finite-time path following control problem for an under-actuated stratospheric airship with input saturation, error constraint, and external disturbances. To handle the adverse effect of input saturation, anti-windup compensators are employed and finite-time convergence of the saturated control solution is established. Error constraints of airship position and attitude are handled by incorporating a tan-type barrier Lyapunov function (TBLF) in guidance and attitude control schemes. Backstepping design is presented with the anti-windup compensators, the TBLF, and nonlinear disturbance observers which estimate the external disturbances. Stability analysis shows that the tracking errors of the airship position converge into a small set around zero within finite-time, the constrained requirements on the airship position and attitude are not violated during operation, and all closed-loop signals are guaranteed to be uniformly ultimately bounded. Compared with the conventional control scheme, simulation results illustrate that the proposed finite-time controller offers a faster convergence rate and a higher path following accuracy for the stratospheric airship.  相似文献   

15.
This paper presents an adaptive gain-scheduled backstepping control (AGSBC) scheme for the balance control of an underactuated mechanical power-line inspection (PLI) robotic system with two degrees of freedom and a single control input. First, a nonlinear dynamic model of the balance adjustment process of the PLI robot is constructed, and then the model is linearized at a nominal equilibrium point to overcome the computational infeasibility of the conventional backstepping technique. Second, to solve generalized stabilization control issue for underactuated systems with multiple equilibrium points, an equilibrium manifold linearized model is developed using a scheduling variable, and then a gain-scheduled backstepping control (GSBC) scheme for expanding the operational area of the controlled system is constructed. Finally, an adaptive mechanism is proposed to counteract the impact of external disturbances. The robust stability of the closed-loop system is ensured by Lyapunov theorem. Simulation results demonstrate the effectiveness and high performance of the proposed scheme compared with other control schemes.   相似文献   

16.
In this article, a novel output-feedback adaptive dynamic surface control scheme is proposed for linear time-invariant multivariable plants based on the norm estimation of unknown parameter matrices. Besides avoiding the explosion of complexity problem in traditional multivariable backstepping design, the proposed scheme has the following features: (1) only one parameter needs to be updated on-line regardless of the plant order and input–output dimension, (2) only the Hurwitz condition is required for the high-frequency gain matrix and (3) the ? performance of the tracking error can be guaranteed. It is shown that all signals of the closed-loop system are semi-globally uniformly bounded. Simulation results are given to illustrate the effectiveness of the proposed scheme.  相似文献   

17.
A neural adaptive compensation tracking control scheme considering the prescribed tracking performance bound is proposed for a flying wing aircraft with control surface faults, actuator saturation and uncertainties of aerodynamic parameters. Second-order command filters are introduced to avoid the saturation of the actuators, prescribed performance bound strategy is designed to characterize the convergence rate and maximum overshoot of the tracking error, uncertainties of aerodynamic parameters are approximated by online RBF neural networks, and control allocation law is designed to reduce the coupling of the flight dynamics. The closed-loop control law is given based on adaptive backstepping compensation control scheme, and the stability of the closed-loop system is proved by Lyapunov based design. Simulation results are given to illustrate the effectiveness of the proposed neural adaptive compensation control scheme.  相似文献   

18.
This paper proposes a novel adaptive backstepping control for a special class of nonlinear systems with both matched and mismatched unknown parameters. The parameter update laws resemble a nonlinear reduced-order disturbance observer. Thus, the convergence of the estimated parameter values to the true ones is guaranteed. In each recursive design step, only single parameter update law is required in comparison to the existing standard adaptive backstepping techniques based on overparametrization and tuning functions. To make a fair comparison with the overparametrization and tuning function methods, a second-order nonlinear engine cooling system is taken as a benchmark problem. This system is subject to both matched and mismatched state-dependent lumped disturbances. Moreover, the proposed model-based controllers are compared with a classical PI control by using performance metrics, i.e., root-mean-square error and control effort. The comparative analysis based on these performance metrics, simulations as well as experiments highlights the effectiveness of the proposed novel adaptive backstepping control in terms of asymptotic tracking, global stability and guaranteed parameter convergence.  相似文献   

19.
为解决自主水下航行器的变深控制问题,提出一种基于反馈增益的反步控制方法.首先,通过设计控制器参数消除部分非线性项,在保证系统稳定性的同时设计神经网络控制器来补偿纵倾运动中的模型不确定性;然后,通过自适应鲁棒控制器对神经网络的逼近误差予以消除,以加快神经网络的收敛学习速度,神经网络权值和逼近误差估计的学习律可由李雅普诺夫稳定性理论推导得出,保证了闭环系统的一致最终有界性;最后,通过仿真实验验证了所提出方法的有效性.  相似文献   

20.
具有磁滞输入非线性系统的鲁棒自适应控制   总被引:1,自引:0,他引:1  
张秀宇  林岩 《自动化学报》2010,36(9):1264-1271
就一类具有磁滞输入的严反馈非线性系统, 提出了一种鲁棒自适应动态面控制方案. 该方案可克服传统反推控制带来的“微分爆炸”问题, 保证闭环系统的半全局稳定性, 且跟踪误差可收敛到任意小的残集内. 特别地, 通过引入动态面修正及初始化技巧, 可保证系统跟踪误差的L∞ 性能指标. 数值仿真验证了本文所提方法案的有效性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号