首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 283 毫秒
1.
The effect of the amount of adhesive for bonding face sheets and cores on the bending fatigue strength of aluminum honeycomb sandwich beams was analyzed. It was experimentally proved that the fatigue strength increases as increasing the amount of adhesive. Furthermore, the applied loading parameter is not correlated with the fatigue life data of all studied specimens with various amounts of adhesive because the global parameter has no clear physical meanings with respect to the failure mechanism. From the observations made during fatigue testing, debonding at the interface between the honeycomb core and face sheet is the main cause of fatigue failure. Finite element analyses were conducted to obtain the local stress states at the interface, and these simulated stresses were employed in fatigue life prediction parameters. Three local interfacial parameters were adopted and correlated with the experimental data for the studied specimens. The predicted failure locations using the three interfacial parameters were also examined by comparing the observation results in fatigue tests. Among the three studied interfacial parameters, the combined interfacial peeling and shear stress parameter is recommended for use in fatigue design as it provides good fatigue life correlations and predicts the correct locations of failure initiation simultaneously.  相似文献   

2.
通过单向拉伸试验对比分析了两种接头的破坏模式及载荷-位移曲线, 研究了T700/TDE85复合材料单向层合板单搭接胶层内缺陷对接头破坏行为的影响。试验结果表明, 接头破坏的主导模式为界面破坏, 胶层中微小缺陷对接头强度的影响不大。为研究接头的失效机制, 采用有限元方法对两种接头失效进行数值分析, 模拟了接头搭接区界面剥离应力及剪切应力分布情况, 并分析了缺陷位置变化及面积变化对接头强度的影响。结果表明, 随着缺陷位置距接头搭接区自由端部越近, 接头强度越小, 且缺陷位置距接头搭接区自由端部2.5 mm以内, 缺陷对接头强度影响较大; 接头强度随缺陷面积的增大而减小, 并且缺陷面积占搭接区面积的比率在4.4%以内, 缺陷对接头强度的影响较小; 数值计算结果与实验结果吻合较好。  相似文献   

3.
Externally bonded carbon fibre‐reinforced polymers (CFRPs) have been applied to retrofit and strengthen civil structures. In this study, four‐point bending beams were manufactured and tested to examine the fatigue behaviour of the CFRP–concrete interface. The results indicated that the specimens exhibited debonding failure in the concrete beneath the adhesive layer under static loading. However, when cyclic loads were imposed on the small beams, debonding failure may occur in the adhesive layer. Moreover, fitting expressions were proposed to predict the shear stress–slip relationship between the CFRP sheets and concrete and the flexural strength of the CFRP‐strengthened beams under static loads, and good agreement with the test data was obtained. Finally, a fatigue life prediction model was also presented to capture the fatigue life of the CFRP–concrete interface under cyclic loads. The calculation results showed that the fatigue strength of the CFRP–concrete bond interface was approximately 65% of the ultimate load capacity.  相似文献   

4.
The rolling contact fatigue (RCF) behaviour of the plasma‐sprayed CrC–NiCr cermet coatings under different tribological conditions of contact stress was investigated. Four sets of fatigue life data of coatings were characterized by Weibull distributions. The failure modes of the coatings were classified on the basis of worn surface observations of the failed coatings. Results showed that the failure mode of the coating was related to the magnitude of contact stress. The RCF life data of the coatings tested at high contact stresses exhibited high scattering, because the bimodal distribution of the fatigue life data was seen in the Weibull plot. Generally, when the contact stress was relatively low, the coatings were prone to fail in spalling and cohesive delamination. However, at high contact stress, the coatings often failed due to interfacial delamination. At different contact stress levels, the maximum shear stress amplitude was the main reason for the generation of spall and delamination.  相似文献   

5.
A novel method to determine the fiber-matrix interfacial properties of ceramic matrix composites is proposed and evaluated; where micro-pillar samples containing inclined fiber/matrix interfaces were prepared from a SiC fiber-reinforced SiC matrix composites and then compression-tested using the nano-indentation technique. This new test method employs a simple geometry and mitigates the uncertainties associated with complex stress state in the conventional single-filament push-out method or tensile unloading–reloading hysteresis loop analysis method for the determination of interfacial properties. Based on the test results using samples with different interface orientations, the interfacial debond shear strength and the internal friction coefficient are explicitly determined and compared with values obtained by other test methods. SEM observation showed that micro compression caused an adhesive type of debonding between the fiber and the pyrolytic carbon interface. The results suggest that the debonding/failure behavior of the micro-pillars followed the Coulomb fracture criterion. The determined interfacial debond shear strength is ~100 MPa, which appears to be smaller than that determined from fiber push-out test for similar composite systems. The difference can be explained by the effect of normal stress (clamping stress) on the apparent interfacial debond shear strength.  相似文献   

6.
The interfacial failure criterion under combined stress state in a glass fiber/epoxy composite is investigated by the cruciform specimen method. Experiments were conducted by using specimens with a fiber whose angle from the loading direction is varied in order to make various stress state of normal and shear at the interface. Finite element analysis is performed to calculate the interfacial stress distribution. By combining the experimental measurement of the specimen stress at the interfacial debonding initiation and the finite element stress analysis, it is possible to obtain the interfacial stress state at interfacial failure. A method to determine the interfacial failure criterion and the interfacial failure initiation location simultaneously is proposed in the present study. We conclude the value of the interfacial shear strength is higher than that of the interfacial normal strength for the material system used in the present study.  相似文献   

7.
The fatigue behaviour of adhesive patches used for repairing aircraft components was investigated. Adhesive patches were simulated using single‐lap shear specimens on clad and bare 7075‐T6 and 2024‐T3 aluminium alloy substrates. Stress–life curves were generated under constant amplitude loading at three stress ratios: R=?1, 0 and 0.5. In the bare materials, failure always occurred in the adhesive itself leaving the substrates intact. At fatigue lives below about 100 000 cycles, the clad alloy specimens also failed in this manner. However, at lower stress levels, the clad alloys failed by cracks initiating in the cladding layer along the end of the lap and subsequently propagating through the substrate. The fatigue strength of the substrate, due to the adhesive patch on the clad materials, was reduced by an order of magnitude compared to the Military Handbook values.  相似文献   

8.
The effect of adherent thickness on the fatigue performance, fatigue limit, and failure mode of adhesively bonded thin aluminum single lap joint (SLJ) was experimentally and numerically investigated. High‐cycle fatigue tests were performed, and fatigue life was estimated using various fatigue criteria and finite element modeling. Based on the experimental results, increase in adherent thickness leads to increase in fatigue limit. In addition, failure location changes from adhesive to adherent by increasing the adherent thickness. It seems that in adherent failure, selecting a sheet with higher fatigue strength is required to achieve higher fatigue life. Also, based on the analysis of different fatigue criteria, Smith‐Watson‐Topper criterion could predict the joint fatigue life more accurately by considering the mean stress effect and the plastic strain. Finally, as an important result, an unsymmetrical SLJ specimen was evaluated as an industrial case study, and the empirical estimated life was consistent with the experimental results.  相似文献   

9.
碳纤维增强聚合物基复合材料(CFRP)与钢板的界面粘结性能为CFRP加固钢结构的关键问题之一。开展了17个CFRP板-钢板单搭接试件的拉伸剪切试验,研究了不同环氧粘结剂与CFRP材料的CFRP-钢界面力学行为和破坏模式;分析了粘结剂类型和CFRP材料对界面粘结滑移本构和界面剪切性能的影响,讨论了其承载力计算方法。结果表明:采用不同的粘结剂或CFRP材料,界面破坏形式和抗剪承载力均差异较大。采用Sika 330、Lica粘结剂的试件为CFRP板或钢板与胶层的界面破坏,采用Araldite粘结剂的试件为CFRP板浅表层离,采用Sika 30粘结剂的试件为胶层内聚破坏,采用SF(Sika S512/80)碳板的试件为CFRP板深层层离;Araldite试件的抗剪承载力为其他试件的1.7~2.9倍。Sika 330、Araldite及Lica试件粘结滑移曲线无明显下降段,属脆性破坏,而Sika 30与SF试件存在缓坡下降段,失效前有一定征兆;SF试件的粘结滑移本构可简化为三折线模型,其余试件则可简化为双线性模型。SF试件抗剪承载力需用Xia-a模型表征,其余试件则可用Xia-b模型表征。基于粘聚力模型对界面力学行为进行了数值模拟,结果表明,粘聚力模型可以较好地模拟界面的非线性力学行为,剥离应力对本单搭接试件的界面粘结强度影响很小。  相似文献   

10.
The use of adhesively bonded joints in industrial structures requires reliable tools for the estimation of the failure load. The necessary and sufficient condition to predict the strength of such joints involves the implementation of a coupled stress and energetic criteria. However, its application necessitates the identification of the stress distribution along the adhesive layer, which has been approximated in this paper by a previously published closed‐form solution. This analysis along with finite element modelling results are compared with experimental data issued from a double‐notched sample tested with the Arcan fixture at various load ratios. The results show good agreement; the use of the closed‐form solution permitted to predict the failure load more rapidly and in a conservative manner compared with the experimental results. The application of the methodology is also extended to a wider range of joint geometries by means of spatial interpolation using the Kriging model.  相似文献   

11.
In order to investigate the mechanical behavior of asphalt–aggregate systems subjected to direct shear loading and reveal the shear failure mechanism, four groups of direct shear tests were conducted on composite specimens under different experimental conditions with a self-manufactured direct shear test apparatus at 25 °C. Comparative studies were conducted to evaluate the effects of stone surface treatment, asphalt film thickness and loading rate on the shear mechanical behavior of asphalt–aggregate specimens. Results showed that two kinds of the complete stress–displacement curves, including the general single-peak curve and the first-known double-peak curve, were clearly observed for each condition. In addition, the internal failure mechanisms were analyzed based on qualitative and quantitative methods. It can be concluded that the potential failure modes of the direct shear test include adhesive failure at the asphalt–aggregate interface and cohesive failure within the asphalt film. The research results enhance understanding of the shear mechanical behavior and failure mechanism of asphalt mixture, and also provide a reference for the interfacial failure.  相似文献   

12.
In this research, poly(lactic acid) (PLA) blend with poly(butylene adipate‐co‐terephthalate) (PBAT) were selected to fabricate peelable lidding films. In general, blending PLA with PBAT results in hazy films; however, desirable low haze films (<10%) could be achieved in this study by designing proper blend composition and cast film process under optimum conditions. Based on various blends containing PBAT ranging from 15 to 30% by weight, it could be seen that a PBAT/PLA blend of 20/80 showed desired optical and peel–seal property, which had a haze of <10% and low peel strength in an easy‐peel characteristic. It was also observed that not only the blend composition but also the film thickness could influence both optical and peel–seal behaviours because the bulk morphology and surface irregularities of the films could vary by changing films' thicknesses. Thus, cast extruded pristine and PBAT/PLA (20/80) blend films of three different thicknesses (20, 35 and 50 μm) were studied. Peel–seal behaviour and optical properties of these films were examined. An I‐peel test (180°) of films sealed on PLA sheet (thickness of ~350 μm) with different interfacial sealing temperature illustrated failure mechanism of four types, i.e. tearing, partial tearing, cohesive and adhesive failure. Based on this study, the PBAT/PLA of 20/80 wt% films with thickness of 20 μm can be used as easy‐peel lidding film sealed with PLA container. Such PBAT/PLA blend films possess a low haze of ~4% and a low peel strength of 8–10 N/15 mm at a broad range of interfacial sealing temperature of 76–105°C. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

13.
In this paper, the mechanical behavior of the Scarf Lap Joints (SLJs) bonded with adhesive under a tensile load was analyzed. The effects of adherend thickness at the interface stress‐strain distributions of SLJs were examined. The stress‐strain analyses were performed by Finite Element Method (3D‐FEM). The 3D‐FEM code was employed with Ansys (Ver.12.0.1). Experimental results were compared with the 3D‐FEM results and were found quite reasonable. It was concluded that both experimental and 3D‐FEM failure loads were increased with increased adherend thickness. The results indicated that the maximum failure loads were determined at t=8 mm in all joints. The analysis of the SLJs under tensile load showed that the stress and strain concentrations occurred around the edges of the joints.  相似文献   

14.
高温环境下钢-碳纤维增强聚合物复合材料(CFRP)板的胶粘界面是CFRP粘贴加固钢结构的薄弱环节。为掌握温度对钢-CFRP板胶粘界面力学性能的影响,制作了双搭接接头试件,开展了3种胶粘剂在4种温度下(25℃、55℃、70℃和90℃)的静力拉伸试验。探索了接头试件的破坏模式、荷载-位移关系、CFRP板表面应变分布、界面剪应力分布和粘结-滑移关系等。结果表明:当温度低于55℃时,试件的破坏模式与胶粘剂种类相关性更大,当温度高于70℃时,不同胶粘剂的破坏模式具有相似性,且均出现了CFRP板撕裂。温度对不同胶粘试件的承载力影响存在差异,HJY-4105高韧性环氧树脂结构胶粘剂(HJY胶)试件的承载力随温度的升高而增大,LICA-100A/B 环氧树脂结构胶粘剂(LICA胶)试件的温度稳定性较差,Sikadur-30 CN双组份环氧结构加固碳板胶(SIKA30胶)试件在55℃时承载力最高。随着温度升高,胶粘层的剪切强度、界面剪应力峰值和剪切刚度下降,胶粘剂的延性增加,峰值剪应力不影响试件的抗拉强度。温度对粘结-滑移关系的影响显著,HJY胶随着温度的升高,粘结-滑移本构的延性增加,破坏模式由脆性破坏变为延性破坏。研究表明:合理的耐高温胶应用于钢结构加固,能适应自然高温环境的不利影响。   相似文献   

15.
Abstract

In this work, failure loads and failure modes of single lap adhesive joints between composite laminates are investigated. To this aim, a coupled stress and energy criterion is applied and results are compared to numerical reference solutions using cohesive zone modeling and to experimental values from literature. Possible failure modes are adhesive failure along the adherend/adhesive interface, adherend failure as intralaminar failure in the first ply closest to the adhesive layer and interlaminar failure between the first and second ply. Suitable failure criteria adressing the different failure modes are implemented within the framework of the coupled criterion. The stress criterion is carried out in a pointwise or in an averaged manner, called point method or line method respectively. It is shown that two physically sound failure modes can only be predicted using the stress criterion in an averaged manner since the pointwise evaluation does not allow the formation of certain types of cracks.  相似文献   

16.
The polymeric materials in general exhibit strong time–temperature dependence and viscoelastic behavior. The time–temperature superposition principle is typically used to estimate the long-term viscoelastic behavior. In addition, Mises criterion and Tresca criterion have been proposed to estimate the yield or failure stresses in a multiaxial stress state and Christensen failure criterion can be applied in the case of different tensile and compressive strengths. In this study, using molecular dynamics method, uniaxial and biaxial tensile and compression test simulations were performed for polypropylene at various strain rates and temperatures. It was observed that the compressive fracture stresses were higher than the tensile fracture stresses. In addition, the fracture stress was high at a low temperature and high strain rate and these fracture stresses are in good agreement with Christensen failure criterion curves. Furthermore, the long-term viscoelastic behavior can almost be predicted from the short-term viscoelastic behaviors at three different temperatures using time–temperature superposition principle. But, the simulations at a wide range of temperatures is important to predict the more accurate long-term viscoelastic behavior.  相似文献   

17.
This paper investigates the roles of external loads and specimen geometry on crack path selection in adhesively bonded joints. First, the effect of mixed mode fracture on crack path selection is studied. Using epoxy as an adhesive and aluminum as the adherends, double cantilever beam (DCB) specimens with various T-stress levels are prepared and tested under mixed mode fracture loading. Post-failure analyses on the failure surfaces using X-ray photoelectron spectroscopy (XPS) suggest that the failure tends to be more interfacial as the mode II fracture component in the loading increases. This fracture mode dependence of the locus of failure demonstrates that the locus of failure is closely related to the direction of crack propagation in adhesive bonds. Through analyzing the crack trajectories in failed specimens, the effect of mixed mode fracture on the directional stability of cracks is also investigated. The results indicate that the direction of the crack propagation is mostly stabilized when more than 3% of mode II fracture component is present at the crack tip regardless of the T-stress levels in the specimens for the material system studied. Second, using a high-speed camera to monitor the fracture sequence in both quasi-static and low-speed impact tests, the effect of debond rate on the locus of failure and directional stability of cracks is investigated. Post-failure analyses including XPS, Auger electron spectroscopic depth profile, and scanning electron microscopy indicate that as the crack propagation rate increases, the failure tends to be more cohesive and the cracks tend to be directionally unstable. Last, as indicated by the finite element analyses results, the T-stresses, and therefore the directional stability of cracks in adhesive bonds, are closely related to the thickness of the adhesive layer and also the thickness of adherend. This specimen geometry dependence of crack path selection is studied analytically and is verified experimentally.  相似文献   

18.
The mixed mode flexure and notched coating adhesion tests have been carried out in order to characterise interfacial fracture for a range of environmental exposure conditions and to find a meaningful interfacial strength parameter using a fracture mechanics approach. The moisture uptake of the adhesive was accelerated using an open-faced configuration. The critical loading to cause interfacial fracture was measured and was used in conjunction with finite element analysis (FEA) to determine the fracture energy under various exposure conditions. Moisture dependent material properties were incorporated in the FEA. Scanning electron microscopy was used to characterise the nature of the failure surface. Significant degradation of the fracture energy of the interface was found and this was matched by observed changes to the failure surface. The fracture energies were found to be largely independent of test method, exposure environment and time and was primarily related only to the moisture concentration.  相似文献   

19.
《Composites Science and Technology》2002,62(10-11):1373-1379
This paper is concerned with a fatigue study of composite adhesive lap joints produced from a bi-directional woven E-glass fibres and polypropylene. The adhesive used was a Bostik 7452 (Rubber & Plastics Grade) ethyl cyanoacrylate type. The effects of layer orientation, lap joint length and water immersion on the fatigue behaviour were studied. The specimens were immersed in water during periods until ninety days for controlled temperatures of 20, 40 and 70 °C. The results are presented in the form of curves of stress amplitude versus number of cycles to failure and also in the form of number of cycles to failure against time to exposure in water for fixed stress amplitudes. The fatigue damage and failure mechanisms were analysed and discussed. The joint shows that creep deformation within the temperature range of this study was probably the mainly cause of the dynamic stiffness reduction observed.  相似文献   

20.
Biaxial stress tests of carbon fiber-reinforced plastic (CFRP) laminates were performed to investigate failure criteria under biaxial loads. Specimens of unidirectional CFRP laminates were subjected to a tensile load in the longitudinal fiber direction and a compressive load in the transverse fiber direction. An exclusive jig was used to perform biaxial stress tests with a commonly used single-axis testing machine. Measurements were obtained by controlling the displacement ratio between compressive and tensile displacements. The critical tensile and compressive stresses were then calculated using a constitutive equation. The critical longitudinal tensile stress markedly dropped with increasing the compressive load. The failure criteria of the biaxial stress tests were expressed as the ellipse, of which the major and minor axes were the longitudinal tensile/transverse compressive strengths or fracture strains, respectively. Scanning electron microscope observations suggest that fiber/matrix interfacial debonding due to the compressive load could decrease the critical longitudinal tensile stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号