共查询到18条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
对于非线性系统预测控制问题, 本文提出了一种基于模型学习和粒子群优化(PSO)的单步预测控制算法.该方法使用最小二乘支持向量机(LS-SVM)建立非线性系统模型并预测系统的输出值, 通过输出反馈和偏差校正减少预测误差, 由PSO滚动优化获得非线性系统的控制量. 该方法能在非线性系统数学模型未知的情况下设计出有效的预测控制器. 通过对单变量多变量非线性系统进行仿真, 证明了该预测控制方法是有效的, 且具有良好的自适应能力和鲁棒性. 相似文献
5.
针对非线性预测控制中,系统建模和目标函数求解的问题,提出了一种基于粒子群优化的非线性预测控制策略(PSO-NPC)。首先,将时间因素引入到即时学习算法中,提高了基于即时算法的最小二乘支持向量机(LS-SVM)对非线性系统的建模精度。其次,针对单目标优化的常规PSO-NPC算法不足之处,将系统的第一步预测和最后一步预测输出作为主要优化目标,提出了多目标粒子群优化的非线性预测算法。最后,将目标函数中的误差权重作为粒子群优化的目标,根据系统耦合程度自适应调整误差权重,消除了系统回路之间耦合。仿真结果验证了改进算法的可行性和有效性。 相似文献
6.
7.
提出一类非线性系统基于最小二乘支持向量机的直接自适应控制方法.该方法采用最小二乘支持向量机构造自适应控制器,自适应控制器参数的在线调整规律由Lyapunov稳定性理论导出,并严格证明了闭环系统的渐近稳定性.仿真研究表明了此控制方案的可行性和有效性. 相似文献
8.
网络流量预测对大规模网络管理、规划、设计具有重要意义.支持向量机方法是近年来发展起来的新型机器学习算法,用于解决高度非线性分类及回归问题.介绍了基于小波核最小二乘支持向量机的网络流量预测方法,利用小波核函数的多分辨特性提高了支持向量机的非线性建模能力.通过对实测网络流量数据的学习,对未来网络流量进行预测.实验结果表明,取得了较好的预测效果. 相似文献
9.
10.
11.
基于T-S 模型的模糊预测控制研究 总被引:14,自引:1,他引:13
提出一种基于T—S模型的模糊预测控制策略.利用模糊聚类算法高线辨识T—S模型,采用带遗忘因子的递推最小二乘法进行模型参数的选择性在线学习;对模糊模型在每一采样点进行线性化,将T—S模型表示的非线性系统转化为线性时变状态空间模型,并将约束非线性优化问题转化为线性二次规划问题,解决了非线性预测控制中如何获得非线性模型和非线性优化在线求解的难题.将预测域内的线性模型序列作为预测模型,减小了模型误差,提高了控制性能.pH中和过程的仿真验证了该方法的有效性. 相似文献
12.
13.
A weighted LS-SVM approach for the identification of a class of nonlinear inverse systems 总被引:2,自引:0,他引:2
In this paper, a weighted least square support vector machine algorithm for identification is proposed based on the T-S model.
The method adopts fuzzy c-means clustering to identify the structure. Based on clustering, the original input/output space
is divided into several subspaces and submodels are identified by least square support vector machine (LS-SVM). Then, a regression
model is constructed by combining these submodels with a weighted mechanism. Furthermore we adopt the method to identify a
class of inverse systems with immeasurable state variables. In the process of identification, an allied inverse system is
constructed to obtain enough information for modeling. Simulation experiments show that the proposed method can identify the
nonlinear allied inverse system effectively and provides satisfactory accuracy and good generalization.
Supported by the National Natural Science Foundation of China (Grant No. 60874013) and the Doctoral Project of the Ministry
of Education of China (Grant No. 20070286001) 相似文献
14.
15.
针对大型制造企业产品生命周期系统中系统集成复杂、变化频繁的现状,分析现有基于SOA系统集成的不足,在引入模型驱动的基础上,提出了一种动态服务集成方法,该方法是自上向下建模和自下而上服务编排的双向结合。通过扩展领域元模型,将业务过程抽象为逻辑模型;将被集成系统以服务的形式封装,建立服务元数据仓库保存其关键属性;分离业务逻辑和具体实现系统,运用反射机制在运行时将模型实例化为具体的集成过程,自动部署到集成引擎。以该方法为基础建立PLM系统集成平台。实践证明该方法可以有效提高集成的适应能力和敏捷性,降低集成的复杂 相似文献
16.
Paola Falugi 《International journal of control》2013,86(4):745-753
This paper proposes a model predictive control scheme for tracking a-priori unknown references varying in a wide range and analyses its performance. It is usual to assume that the reference eventually converges to a constant in which case convergence to zero of the tracking error can be established. In this note we remove this simplifying assumption and characterise the set to which the tracking error converges and the associated region of convergence. 相似文献
17.
Nonlinear models that are composed of a linear dynamic element in series with a nonlinear static element prove to be very attractive in describing the behaviour of many chemical processes. In this paper, a model predictive control scheme is proposed using the Hammerstein model structure. Two simulation examples, a pH neutralization process and a binary distillation column, are used to demonstrate the effectiveness of the method. 相似文献
18.
A new approach to design a Nonlinear Model Predictive Control law that employs an approximate model, derived directly from data, is introduced. The main advantage of using such models lies in the possibility to obtain a finite computable bound on the worst‐case model error. Such a bound can be exploited to analyze the robust convergence of the system trajectories to a neighborhood of the origin. The effectiveness of the proposed approach, named Set Membership Predictive Control, is shown in a vehicle lateral stability control problem, through numerical simulations of harsh maneuvers. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献