首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
《Ceramics International》2017,43(9):7080-7087
Al2O3-SiC-SiO2-C composite refractories are interesting potential blast furnace hearth lining materials that feature several advantageous properties. In this study, the corrosion resistance of a novel Al2O3-SiC-SiO2-C composite refractory to blast furnace slag was investigated by adopting a rotating immersion method (25 r/min) at 1450–1550 °C and comparing it against a conventional corundum-based refractory at 1550 °C as a benchmark. The results showed that the apparent activation energy of Al2O3-SiC-SiO2-C composite refractory over the dissolution process in the slag is 150.4 kJ/mol. Dissolution of the Al2O3 and 3Al2O3·2SiO2 phases appeared to be the main cause of Al2O3-SiC-SiO2-C composite refractory corrosion. High-melting-point compounds in the slag layer formed a protective layer which mitigated the corrosion. The novel Al2O3-SiC-SiO2-C composite refractory is better suited to blast furnace hearth lining than the conventional corundum-based refractory, because the carbon phase and SiC phase in the material are not readily wetted by the blast furnace slag and therefore are more resistant to slag penetration. Higher melting point phases also may crystallize on the hot face of the hearth lining due to the high thermal conductivity of the Al2O3-SiC-SiO2-C composite refractory, promoting a more stable protective layer.  相似文献   

2.
为了防治铅对炉底衬砖的侵蚀,对被铅侵蚀的高炉炉底炭砖残砖试样进行了性能测试和显微结构分析,并重点分析了含铅量高的炉底炭砖的显微结构,研究了铅在炭砖中的存在形式和分布状态。结果表明:金属铅可以渗入炉底炭砖的气孔中;铅渗入炭砖对炭砖强度、抗氧化性、抗碱性等性能有明显的不利影响;铅对炭砖的侵蚀机制是铅渗透到炭砖的孔隙中氧化膨胀而破坏砖体;防治铅害的措施是尽量少用铅含量高的入炉原料,炉缸炉底采用超微孔炭砖,强化炉缸炉底冷却。  相似文献   

3.
《Ceramics International》2017,43(13):9912-9918
The novel carbon sources (including nano-carbon black, carbon nanotubes and graphene oxide nanosheets, etc.) have been extensively researched in low carbon Al2O3-C refractory systems. In the present work, ultrafine microcrystalline graphite (UMCG) and nickel-loaded ultrafine microcrystalline graphite (NMCG) were added into low carbon Al2O3-C slide gate plate refractories to partially replace graphite flake (GF), respectively. The mechanical properties, phase compositions and microstructures were investigated by three-point bending test, X-ray diffraction, scanning electron microscopy, transmission electron microscopy and energy dispersive X-ray spectroscopy. Also, the reaction mechanisms of in-situ formed ceramic phases were discussed by thermodynamic analysis. The results indicate that the existence of UMCG powders can facilitate the in-situ formation of intertwined ceramic whiskers, leading to increased densification and mechanical properties of low carbon Al2O3-C slide gate plate. Moreover, multi-walled carbon nanotubes and ceramic phases intensively interlock with each other in the Al2O3-C refractories containing NMCG powders, which results in their better mechanical properties; the cold modulus of rupture are 36.03±0.12 MPa and 32.14±0.17 MPa for the specimens after coking at 1200 °C and 1350 °C, respectively. This work puts forward a practical application for the microcrystalline graphite as a candidate carbon source in Al2O3-C slide gate plate refractories.  相似文献   

4.
A high performance and low cost C/C–SiC composite was prepared by Si–10Zr alloyed melt infiltration. Carbon fiber felt was firstly densified by pyrolytic carbon using chemical vapor infiltration to obtain a porous C/C preform. The eutectic Si–Zr alloyed melt (Zr: 10 at.%, Si: 90 at.%) was then infiltrated into the porous preform at 1450 °C to prepare the C/C–SiC composite. Due to the in situ reaction between the pyrolytic carbon and the Si–Zr alloy, SiC, ZrSi2 and ZrC phases were formed, the formation and distribution of which were investigated by thermodynamics. The as-received C/C–SiC composite, with the flexural strength of 353.6 MPa, displayed a pseudo-ductile fracture behavior. Compared with the C/C preform and C/C composite of high density, the C/C–SiC composite presented improved oxidation resistance, which lost 36.5% of its weight whereas the C/C preform lost all its weight and the high density C/C composite lost 84% of its weight after 20 min oxidation in air at 1400 °C. ZrO2, ZrSiO4 and SiO2 were formed on the surface of the C/C–SiC composite, which effectively protected the composite from oxidation.  相似文献   

5.
This paper shows the results of the solid-state synthesis of mullite from spent catalysts discarded from fluid catalytic cracking (FCC); the catalysts are mainly composed of silica and alumina but are polluted with SOX, forming a non-crystalline network. The synthesized mullite was used as a feedstock to thermally spray a coating onto a silica-alumina refractory brick, and its chemical resistance at high temperature was subsequently evaluated by contact with K2CO3 at 950 °C. Initially, the spent catalyst was thermally treated for 2 h at 600, 900, and 1200 °C to eliminate the SOX pollutant. The heat treatment at 1200 °C completely removed the SOX in the sample. Additionally, four thermal processes were performed by heating the spent FCC catalyst in an electrical furnace to 1500 and 1600 °C and by using an oxyacetylene flame to synthesize mullite. Thermal treatments at 1500 °C were performed with and without alumina added to the spent FCC catalyst, whereas those conducted at 1600 °C and using a flame were performed using only added alumina. In the powders thermally treated at 1500 °C, silica-rich mullite (3Al2O3.2SiO2) accompanied by an excess of alumina or silica was obtained with or without alumina added, respectively. In contrast, the materials treated at 1600 °C formed alumina-rich mullite (2Al2O3.SiO2), which was accompanied by an excess of alumina. Mullite was not synthesized in the flame-heated powder. The silica-rich mullite accompanied by an excess of alumina was used as feedstock powder to modify the surface of a refractory brick, improving its resistance to chemical attack by K2CO3 at high temperature.  相似文献   

6.
《Ceramics International》2015,41(6):7929-7936
Oxidation of carbon is one of the main problems in alumina–carbon based refractory. In this paper, the oxidation behaviors of novel carbon composite brick and traditional carbon brick were investigated by non-isothermal and isothermal experiments, and the samples after oxidation were examined by SEM and EDS analysis. The results show that the oxidation resistance of carbon composite brick is better than that of carbon brick. At 800−1200 °C, the oxidation kinetics of carbon brick follows the linear rate law, which belongs to non-protective oxidation, and the oxidation activation is 5586.76 J/mol. However, the oxidation kinetics of carbon composite brick follows the parabolic rate law, which belongs to protective oxidation. The compressive strength decreases with the increasing mass loss after oxidation due to the carbon loss, so for carbon composite brick which has less content of carbon the oxidation resistance is better than that of carbon brick. Furthermore, the existence of SiC in the surface of carbon composite brick is another reason for its good oxidation resistance.  相似文献   

7.
《Ceramics International》2017,43(14):10983-10990
To improve fracture toughness of monolithic Al2O3 ceramics, three-dimensional carbon fiber preform was used as reinforcement, and the C/Al2O3 composites without interfacial coating were fabricated through vacuum impregnation-drying-heat treatment route with an Al2O3 sol as starting material. Characteristics of the Al2O3 sol with high solid content were firstly analyzed. Then thermal stability and oxidation resistance of the C/Al2O3 composites were investigated. It is found that the Al2O3 sol is an appropriate raw material for the fabrication of C/Al2O3 composites. The C/Al2O3 composites with a total porosity of 15.5% show a flexural strength of 208.5 MPa and a fracture toughness of 8.1 MPa m1/2. Strength loss is observed after the composites were annealed at 1400 °C and 1600 °C under inert atmosphere. Oxidation resistance of the C/Al2O3 composites is unsatisfactory because of the existence of open pores and microcracks. When Al2O3 matrix was modified with SiO2, the oxidation resistance is remarkably improved due to the viscous flow effect of SiO2.  相似文献   

8.
High-performance ZrB2-SiC-Cf composite was successfully prepared by low temperature (1450 °C) hot pressing using nanosized ZrB2 powder. Such material exhibited a non-brittle fracture feature, high work of fracture (321 J/m2) and excellent thermal shock resistance as well as good oxidation resistance. Composite incorporating carbon fibers in which the degradation of the carbon fiber was effectively inhibited through low-temperature sintering displayed remarkably improved thermal shock resistance with a critical temperature difference of 754 °C, almost twice those of the reported ZrB2-based ultra-high temperature ceramics. The thermal and chemical stability of the carbon fiber and ceramic matrix were further analyzed by thermodynamic calculation and HR-TEM analysis.  相似文献   

9.
《Ceramics International》2017,43(17):15246-15253
MgAl2O4 nanoparticles (NPs) were prepared by sol–gel method using aluminium nitrate, magnesium nitrate and citric acid as starting materials, phenolic formaldehyde resin and carbon black as additives. Growth of MgAl2O4 NPs in different heat treatment conditions (temperature, atmosphere, carbon additives and in Al2O3-C system) was investigated. MgAl2O4 NPs were formed at 600 °C in air atmosphere with serious agglomeration of nanoparticles having diameter of approximate 30 nm. The size of MgAl2O4 NPs increased greatly from 40 to 50 nm to several hundreds of nanometres as the temperature was raised from 800 °C to 1400 °C. Partial sintering of NPs was observed upon heating at temperatures higher than 1200 °C in air. In reducing atmosphere, the size of MgAl2O4 NPs (about 30–50 nm) changed slightly with increasing temperature. This was attributed to the dispersion of carbon inclusions in the MgAl2O4 grain boundaries, inducing a steric hindrance effect and inhibiting the growth of particles. MgAl2O4 NPs (30–50 nm) in the Al2O3-C system were in-situ formed at high temperatures with the use of dried precursor gels. MgAl2O4 NPs can contribute to improving the thermal shock resistance of Al2O3-C materials.  相似文献   

10.
The ablation/oxidation resistance of a carbon fibre (Cf)/carbon matrix (C)-SiC-TiC-TaC ceramic matrix composite (CMC) produced by melt infiltration of alloy into a Cf/C preform and tested in severely oxidising conditions was quantitatively determined and discussed. An oxyacetylene flame shot of 7.5 s (4 MW/m2 nominal heat flux), as well as oxidising conditions imposed by a radiant furnace in air at 1873 K up to 480 s were the selected testing conditions. Detailed post-test microstructure investigations of the oxidised/ablated infiltrated CMC samples, compared to unprotected CMCs tested in nominally identical conditions, enabled to establish an increase in ablation/oxidation resistance of one order of magnitude. The occurrence of a self-generating protective high-temperature glass-ceramic, disclosed by microstructure analyses, played a substantial role for that performance jump during oxidation/ablation. The Cf/C-SiC-TiC-TaC composite herein tested can be a valuable candidate for uses in severe aerospace applications (propulsion and hypersonic flight).  相似文献   

11.
A nearly fully dense (>98%) electroconductive silicon nitride—35 vol.% titanium diboride composite was obtained by hot isostatic pressing (HIP) in presence of a low content of sintering aids (0.5 wt.% Y2O3 + 0.25 wt.% Al2O3). To improve the oxidation behaviour of this composite material, a 3-μm thick protective coating of aluminium oxide was deposited on cubic samples (4 mm × 4 mm × 4 mm) by microwave plasma-enhanced chemical vapor deposition (PECVD) using an oxygen plasma and an organometallic precursor (trimethylaluminium). SEM images demonstrated that the coating was homogeneously distributed on the external surface of the specimens.Non-isothermal and isothermal oxidation tests were carried out with a Setaram Microbalance under pure flowing oxygen (10 L/h) on both uncoated and coated Si3N4–TiB2 samples. In the case of non-isothermal oxidation of a substrate without coating, the reaction started at 600 °C. Between 1100 and 1350 °C, a plateau was observed and above 1350 °C the weight gain increased significantly. In presence of an Al2O3 coating, the composite started to oxidize at higher temperature (1200 °C). Isothermal kinetics recorded for 24 h, at 1350 and 1400 °C, revealed that the presence of the Al2O3 coating improved drastically the oxidation resistance and changed the shape of the curves from globally parabolic to almost logarithmic. An explanation of this protective behaviour, based on the characterization by XRD, SEM and EDS of the reaction products, is proposed.  相似文献   

12.
MoSi2, MoSi2–10 vol.% Al2O3, MoSi2–30 vol.% Al2O3 (denoted as MA0, MA1, MA3, respectively) coatings were fabricated by vacuum plasma spraying (VPS), and their oxidation behavior was examined at low temperature (500 °C) and high temperature (1500 °C). The test at 500 °C showed that the addition of Al2O3 effectively restrained the pest oxidation of MoSi2. The MA1 coating had satisfactory fluid surface and presented good oxidation resistance at 1500 °C. However, the MA3 coating showed worse oxidation resistant behavior compared with the MA0 coating because of mullite formation.  相似文献   

13.
The oxidation behaviour of AlN–SiC–TiB2 composite materials with 2, 5 and 10 mass% TiB2 and 3 mass% Fe additive obtained using powder metallurgy methods was studied in air up to 1500 °C by thermogravimetry (TG) and differential thermal analysis (DTA) techniques. The phase composition and structure of the oxide films formed were investigated using metallography, X-ray diffraction (XRD) and electron probe microanalysis (EPMA) methods. The two-stage character of non-isothermal oxidation kinetics (heating rate of 15 grade/min) of composites was established. During the first oxidation stage (up to 1350 °C), the formation of α-Al2O3, TiO2 (rutile), B2O3 and β-cristobalite as well as different aluminium borates was found. They formed as a result of interaction between Al2O3 and melted B2O3. During the second stage (above 1350–1400 °C), the mullite 3Al2O3·2SiO2 proved to be a main oxidation product in the scale; besides, some amounts of β-Al2TiO5 were formed as well. The iron additive dissolved in the mullite and aluminium titanate phases that led to the stabilization of a scale formed. It was established that for the three different TiB2 contents, oxidation isotherms follow the parabolic or paralinear rate law. The slope change on the Arrhenius plot given by the dependence of the parabolic rate constants on the reciprocal temperature, suggests a change of the oxidation mechanism in the temperature range of 1300–1350 °C. For example, for the (AlN–SiC)–5% TiB2 composite specimen, the calculated values of apparent activation energy are equal to 285 kJ/mol (1100–1300 °C) and 500 kJ/mol (1350–1550 °C), respectively. The AlN–SiC–TiB2 ceramics developed here can be recommended as high-performance materials for a use in oxidizing medium up to 1450 °C.  相似文献   

14.
Current generation carbon–carbon (C–C) and carbon–silicon carbide (C–SiC) materials are limited to service temperatures below 1800 °C and materials are sought that can withstand higher temperatures and ablative conditions for aerospace applications. One potential materials solution is carbon fibre-based composites with matrices composed of one or more ultra-high temperature ceramics (UHTCs); the latter are intended to protect the carbon fibres at high temperatures whilst the former provides increased toughness and thermal shock resistance to the system as a whole. Carbon fibre–UHTC powder composites have been prepared via a slurry impregnation and pyrolysis route. Five different UHTC compositions have been used for impregnation, viz. ZrB2, ZrB2–20 vol% SiC, ZrB2–20 vol% SiC–10 vol% LaB6, HfB2 and HfC. Their high-temperature oxidation resistance has been studied using a purpose built oxyacetylene torch test facility at temperatures above 2500 °C and the results are compared with that of a C–C benchmark composite.  相似文献   

15.
16.
Boron was introduced into Cf/SiC composites as active filler to shorten the processing time of PIP process and improve the oxidation resistance of composites. When heat-treated at 1800 °C in N2 for 1 h, the density of composites with boron (Cf/SiC-BN) increased from 1.71 to 1.78 g/cm3, while that of composites without boron (Cf/SiC) decreased from 1.92 to 1.77 g/cm3. So when boron was used, two cycles of polymer impregnation and pyrolysis (PIP) could be reduced. Meanwhile, the oxidation resistance of composites was greatly improved with the incorporation of boron-bearing species. Most carbon fiber reinforcements in Cf/SiC composite were burnt off when they were oxidized at 800 °C for 10 h. By contrast, only a small amount of carbon fibers in Cf/SiC-BN composite were burnt off. Weight losses for Cf/SiC composite and Cf/SiC-BN composite were about 36 and 16 wt%, respectively.  相似文献   

17.
A cost-effective tubular macroporous ceramic support consisting of alumina and titania was prepared by extrusion and subsequent heat treatment. An Al2O3/TiO2 composite support with high porosity (41.4%), an average pore size of 6.8 μm and sufficient mechanical strength (32.7 MPa) was obtained after sintering at 1400 °C. The formation mechanism of this support as investigated with X-ray micromapping, SEM and XRD indicated that the appearance of Al2TiO5 plays a key role in the fabrication of high performance composite membrane supports at relatively low temperature. The amount of Al2TiO5 present in the composite has a strong impact on the properties of supports, especially with regard to the mechanical strength. A composite of 85 wt.% Al2O3/15 wt.% TiO2 sintered at 1400 °C for 2 h exhibited both high permeability (pure water flux of 45 m3 m?2 h?1 bar?1), together with an excellent corrosive resistance towards hot NaOH and HNO3 solutions.  相似文献   

18.
ZrB2–SiC–BN ceramics were fabricated by hot-pressing under argon at 1800 °C and 23 MPa pressure. The microstructure, mechanical and oxidation resistance properties of the composite were investigated. The flexural strength and fracture toughness of ZrB2–SiC–BN (40 vol%ZrB2–25 vol%SiC–35 vol%BN) composite were 378 MPa and 4.1 MPa m1/2, respectively. The former increased by 34% and the latter decreased by 15% compared to those of the conventional ZrB2–SiC (80 vol%ZrB2–20 vol%SiC). Noticeably, the hardness decreased tremendously by about 67% and the machinability improved noticeably compared to the relative property of the ZrB2–SiC ceramic. The anisothermal and isothermal oxidation behaviors of ZrB2–SiC–BN composites from 1100 to 1500 °C in air atmosphere showed that the weight gain of the 80 vol%ZrB2–20 vol%SiC and 43.1 vol%ZrB2–26.9 vol%SiC–30 vol%BN composites after oxidation at 1500 °C for 5 h were 0.0714 and 0.0268 g/cm2, respectively, which indicates that the addition of the BN enhances oxidation resistance of ZrB2–SiC composite. The improved oxidation resistance is attributed to the formation of ample liquid borosilicate film below 1300 °C and a compact film of zirconium silicate above 1300 °C. The formed borosilicate and zirconium silicate on the surface of ZrB2–SiC–BN ceramics act as an effective barriers for further diffusion of oxygen into the fresh interface of ZrB2–SiC–BN.  相似文献   

19.
Suspension of YSZ and Al particles in acetone in presence of 1.2 g/l iodine as dispersant was used for electrophoretic deposition of green form YSZ/Al coating. Results revealed that applied voltage of 6 V and deposition time of 3 min were appropriate for deposition of green composite form coating. After deposition, a nanostructured dense YSZ/Al2O3 composite coating was fabricated by oxidation of Al particles at 600 °C for 2 h and subsequently sintering heat treatment at 1000 °C for 2 h. Melting and oxidation of Al particles in the green form composite coating not only caused reaction bonding between the particles but also lowered the sintering temperature of the ceramic coating about 200 °C. The EDS maps confirmed that the composition of fabricated coating was uniform and Al2O3 particles were dispersed homogenously in YSZ matrix.  相似文献   

20.
《Ceramics International》2017,43(2):1762-1767
Corundum-mullite composite ceramics have high hardness, small plastic deformation and other excellent performances at high temperature. Corundum-mullite composite ceramics were fabricated from andalusite and α-Al2O3 by in-situ synthesis technology. Effects of mullite/corundum ratio and sintering temperatures on the water absorption, apparent porosity, bulk density, bending strength, thermal shock resistance, phase composition and microstructure of the sample were investigated. Results indicated that the in-situ synthesized mullite from andalusite combined with corundum satisfactorily, which significantly improved the thermal shock resistance as no crack formed after 30 cycles of thermal shock (1100 °C-room temperature, air cooling). Formula A4 (andalusite: 37.31 wt%, α-Al2O3: 62.69 wt%, TiO2 in addition: 1 wt%, mullite: corundum=6:4 in wt%) achieved the optimum properties when sintering at 1650 °C, which were listed as follows: water absorption of 0.15%, apparent porosity of 0.42%, and bulk density of 3.21 g⋅cm−3, bending strength of 117.32 MPa. The phase composition of the sintered samples before and after thermal shock tests were mullite and corundum constantly. The fracture modes of the crystals were transgranular and intergranular fractures, which could endow the samples with high thermal shock resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号