首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this research, fabrication and characterization of ultraviolet (UV) detectors based on zinc sulfide–reduced graphene oxide (rGO) nanocomposite with the focus on the wurtzite structure of zinc sulfide was carried out. The nanoparticles of ZnS were synthesized using chemical deposition method and annealed at 500?°C under flow of argon. X-ray diffraction pattern showed that ZnS with the wurtzite phase was formed at 500?°C. Here, rGO as a unique material with similar properties to graphene such as high electron transport was used in order to improve the optical properties of ZnS. For this purpose, rGO was added to ZnS with three different weight percentages of 5, 10 and 15. Scanning electron microscopy showed that ZnS nanoparticles were well placed in rGO sheets. The UV–visible spectra of the synthesized composites showed that with increasing rGO in composite, light absorption is increased. Photoluminescence (PL) spectra also showed that with increasing the percentage of rGO the generation of electron-hole in composite was increased and PL peak was enhanced. The effect of elevated generation of electron-hole pairs was apparent in optoelectrical properties of fabricated UV detectors based on the sample with higher concentration of rGO in composite. For this sample, the response time was decreased to 310 ms, and the sensitivity to UV irradiation was increased by 7.7 times.  相似文献   

2.
《Ceramics International》2016,42(14):15209-15216
The effect of annealing temperature on photovoltaic and near-infrared (NIR) detector applications of PbS nanoparticles (NPs) and PbS/graphene nanocomposites was investigated. The products were synthesized by a simple co-precipitation method and graphene oxide (GO) sheets were used as graphene source. Several characterization techniques were used to show transfer of the GO into reduced graphene oxide (rGO) during the synthesis process. In addition, the effect of graphene concentrations on morphology, structure, photovoltaic, and detector parameters of the samples were studied. Transmission electron microscope (TEM) images showed that, the PbS NPs were agglomerated, while, the PbS/rGO nanocomposites were dispersed completely after annealing under H2/Ar gas atmosphere. UV–visible spectrometer showed an absorption peak for all samples in the near infrared red (NIR) region of the electromagnetic spectrum. The results indicated that, photocurrent intensity, responsivity of the samples to an NIR source, and solar-cell efficiency were affected by annealing of samples and graphene concentrations.  相似文献   

3.
《Ceramics International》2019,45(11):13923-13933
In the present study, a simple UV-assisted sonication method is used for the development of bismuth sulfide (Bi2S3) nanostructures on graphene sheets. X-ray diffraction (XRD) and Raman results indicated that graphene oxide (GO) layers are reduced. Field emission scanning electron microscopy (FESEM) images also indicated that Bi2S3 particles without rGO sheets are agglomerated. In comparison, when adding these sheets, the particles are uniformly spread (decorated) and their size is reduced significantly due to the incorporation of rGO sheets. UV–Vis studies reveal that the band gap in Bi2S3/rGO nanocomposites compared with Bi2S3 has a shift toward shorter wavelengths, suggesting some changes in the electronic band structure of Bi2S3 due to the existence of rGO sheets. Photoluminescence (PL) analysis indicated emission bands in infrared and visible regions resulting from the band edge emission and crystal defects in the samples, respectively. The electrical investigations showed reduced recombination of photogenerated carriers in the nanocomposites. Moreover, the results indicated that the concentration of rGO is an important factor in determining the optoelectrical behavior of these devices.  相似文献   

4.
Graphene/polybenzimidazobenzophenanthroline nanocomposites were prepared through the liquid-phase exfoliation of graphene oxide (GO) and reduced graphene oxide (rGO) in methanesulfonic acid with subsequent solution mixing. Various chemical and combined chemical-thermal methods were examined to be effective for producing rGO with highly graphitic structure and excellent electrical conductivity. Raman and X-ray photoelectron spectroscopy showed higher degree of reduction of the GO with the combined chemical-thermal method compared to other chemical reduction processes. Structural characterization of the nanocomposites by X-ray diffraction, scanning electron microscopy and transmission electron microscopy showed good exfoliation and dispersion of both GO and rGO fillers in the polymer matrix. The thermogravimetric analysis found that the nanocomposites with rGO have higher onset and maximum weight loss temperatures than those with GO. Compared with the pure polymer, the electrical conductivity of the nanocomposites containing 10 wt% GO and GO reduced by the combined chemical-thermal treatment showed a remarkable increase by four and seven orders of magnitude, respectively. Long-term in-situ thermal reduction was performed to further improve the conductivities of the nanocomposites.  相似文献   

5.
《Ceramics International》2016,42(16):18264-18270
Different morphologies of CdSe microspheres have been synthesized on reduced graphene oxide (rGO) sheets by a simple hydrothermal process using Cadmium nitrate and Se powder as the raw materials. The hybrid CdSe/rGO samples were intensively investigated by XRD, EDS, XPS, SEM and UV–vis absorption spectrum. It was found that the EDTA/Cd2+ molar ratio is crucial for the formation of morphology of CdSe grown on rGO sheets. The results of XRD reveal that the as-prepared CdSe microspheres have zinc blend structure. The results of Raman spectra, EDS, XPS and SEM show that the CdSe microspheres are grown on rGO sheets. In addition, UV–vis absorption spectrum indicates that the CdSe/rGO nanocomposites are believed to serve as photosensitizers to extend the absorption spectrum to visible light region. Superior photocatalytic activity of urchin-like CdSe microspheres grown on rGO sheets relative to those of other CdSe/rGO nanocomposites was observed under visible light irradiation. The growth mechanism for the formation of CdSe microspheres grown on rGO sheets was also described.  相似文献   

6.
A simple, cost-effective, efficient, and green approach to synthesize iron oxide/graphene (Fe3O4/rGO) nanocomposite using in situ deposition of Fe3O4 nanoparticles on reduced graphene oxide (rGO) sheets is reported. In the redox reaction, the oxidation state of iron(II) is increased to iron(III) while the graphene oxide (GO) is reduced to rGO. The GO peak is not observed in the X-ray diffraction (XRD) pattern of the nanocomposite, thus providing evidence for the reduction of the GO. The XRD spectra do have peaks that can be attributed to cubic Fe3O4. The field emission scanning electron microscopy (FESEM) images show Fe3O4 nanoparticles uniformly decorating rGO sheets. At a low concentration of Fe2+, there is a significant increase in the intensity of the FESEM images of the resulting rGO sheets. Elemental mapping using energy dispersive X-ray (EDX) analysis shows that these areas have a significant Fe concentration, but no morphological structure could be identified in the image. When the concentration of Fe2+ is increased, the Fe3O4 nanoparticles are formed on the rGO sheets. Separation of the Fe3O4/rGO nanocomposite from the solution could be achieved by applying an external magnetic field, thus demonstrating the magnetic properties of the nanocomposite. The Fe3O4 particle size, magnetic properties, and dispersibility of the nanocomposite could be altered by adjusting the weight ratio of GO to Fe2+ in the starting material.  相似文献   

7.
This paper reports on a facile synthesis method for reduced graphene oxide (rGO)/multi-walled carbon nanotubes (MWNTs) nanocomposites. The initial step involves the use of graphene oxide to disperse the MWNTs, with subsequent reduction of the resultant graphene oxide/MWNTs composites using l-ascorbic acid (LAA) as a mild reductant. Reduction by LAA preserves the interaction between the rGO sheets and MWNTs. The dispersion-containing rGO/MWNTs composites was characterized and electrophoretically deposited anodically onto glassy carbon electrodes to form high surface area films for capacitance testing. Pseudo capacitance peaks were observed in the rGO/MWNTs composite electrodes, resulting in superior performance with capacitance values up to 134.3 F g?1 recorded. This capacitance value is higher than those observed for LAA-reduced GO (LAA-rGO) (63.5 F g?1), electrochemically reduced GO (EC-rGO) (27.6 F g?1), or electrochemically reduced GO/MWNTs (EC-rGO/MWNTs) (98.4 F g?1)-based electrodes.  相似文献   

8.
Among many methods to synthesize graphene, solution-based processing provides many advantages owing to its low cost, high productivity, chemical versatility, and scalability. In particular, graphene oxide (GO) is one of the most promising nanocarbons that enable the incorporation of graphene and related materials into bulk materials and nanocomposites. GO has hydrophilic nature that enables straightforward dispersion in aqueous solution by sonication, but GO show poor dispersibility in common organic solvents, which prevent much wider applications such as solution-mixing polymer nanocomposites. Here we prepared highly soluble, functionalized GO in both aqueous and non-aqueous solvents. This was achieved by reacting polyetheramine consisting of amphiphilic components, e.g., polypropylene oxide and polyethylene oxide, with carboxylic acid groups at GO edges. Moreover, the reduced GO (rGO) was also highly dispersible in aqueous solution as well as non-aqueous solutions. These functionalized GO and rGO can be used for many solution-processed graphene composites.  相似文献   

9.
Ates  Murat  Yildirim  Murat 《Polymer Bulletin》2020,77(5):2285-2307
Polymer Bulletin - In this work, reduced graphene oxide (rGO) was obtained by chemical reduction of graphene oxide (GO) using sodium borohydride (NaBH4). Four different nanocomposites rGO/ruthenium...  相似文献   

10.
A facile, eco-friendly and economical approach was demonstrated for the synthesis of gold-decorated reduced graphene oxide nanocomposites (rGO–Aunano) using beer as a reducing agent via a hydrothermal method. The phenolic compounds of beer play a key role in the reduction of graphene oxide and the gold precursor. The obtained rGO–Aunano was characterized by X-ray diffraction, UV–vis absorption spectroscopy, electron microscopy, atomic force microscopy and the electrochemical impedance spectroscopy. Analysis revealed that the electron-transfer resistance of rGO–Aunano/GCE was much lower than that of the GCE and GO/GCE. The proposed nanocomposites have excellent electrocatalytical properties for catalytic reduction of O2 in solution.  相似文献   

11.
Currently, there is great interest in graphene‐based devices and applications because graphene has unique electronic and material properties, which can lead to enhanced material performance. Graphene may be used in a wide variety of potential applications from next‐generation transistors to lightweight and high‐strength polymeric composite materials. Graphene, which has atomic thickness and two‐dimensional sizes in the tens of micrometer range or larger, has also been considered a promising nanomaterial in gas‐ or liquid‐barrier applications because perfect graphene sheets do not allow diffusion of small gases or liquids through its plane. Recent molecular simulations and experiments have demonstrated that graphene and its derivatives can be used for barrier applications. In general, graphene and its derivatives can be applied via two major routes for barrier polymer applications. One is the transfer or coating of few‐layered, ultrathin graphene and its derivatives, such as graphene oxide (GO) and reduced graphene oxide (rGO), on polymeric substrates. The other is the incorporation of fully exfoliated GO or rGO nanosheets into the polymeric matrix. In this article, we review the state‐of‐the‐art research on the use of graphene, GO, and rGO for barrier applications, including few‐layered graphene or its derivatives in coated polymeric films and polymer nanocomposites consisting of chemically exfoliated GO and rGO nanosheets, and their gas‐barrier properties. As compared to other nanomaterials being used for barrier applications, the advantages and current limitations are discussed to highlight challenging issues for future research and the potential applications of graphene/polymer, GO/polymer, and rGO/polymer composites. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39628.  相似文献   

12.
An in situ strategy for fabrication of reduced graphene oxide/fused silica (rGO/FS) composites using 3-aminopropyltriethoxysilane as surfactant is reported. GO nanosheets were bound to FS particles by an electrostatic assembly between ultra thin negatively charged GO sheets and positively charged amino-modified FS particles. After spark plasma sintering, rGO/FS bulk composites have been produced from the GO and FS composite particles with GO being reduced to rGO in vacuum at high temperatures. Results show that rGO sheets were well dispersed in the matrix, and conductivity of these rGO/FS composites at room temperature was strongly dependent on the rGO nanosheet concentration. i.e., the conductivity of rGO/FS was increased to 10−4 S/cm when a conducting network was formed inside the composites. The effect of GO nanosheets on the mechanical properties of rGO/FS bulk composites was also investigated. The addition of 1 wt.% GO sheets to FS resulted in 72% increase in Vickers hardness, indicating the stress transfering from the FS matrix to the rigid rGO sheets. With the same rGO content, the fracture toughness of the as-prepared composites was increased by 74%. The main toughening mechanisms were thought to be crack deflection, crack branching, pulling-out and bridging of the rGO sheets.  相似文献   

13.
Graphene nanogrids (fabricated by graphene nanoribbons obtained through oxidative unzipping of multi-walled carbon nanotubes) were used as two-dimensional selective templates for accelerated differentiation of human mesenchymal stem cells (hMSCs), isolated from umbilical cord blood, into osteogenic lineage. The biocompatible and hydrophilic graphene nanogrids showed high actin cytoskeleton proliferations coinciding with patterns of the nanogrids. The amounts of proliferations were found slightly better than proliferation on hydrophilic graphene oxide (GO) sheets, and significantly higher than non-uniform proliferations on hydrophobic reduced graphene oxide (rGO) sheets and polydimethylsiloxane substrate. In the presence of chemical inducers, the reduced graphene oxide nanoribbon (rGONR) grid showed a highly accelerated osteogenic differentiation of the hMSCs (a patterned differentiation) in short time of 7 days in which the amount of the osteogenesis was ∼2.2 folds greater than the differentiation (a uniform differentiation) on the rGO sheets. We found that although in the absence of any chemical inducers the graphene nanogrids showed slight patterned osteogenic differentiations, the graphene sheets could not present any differentiation. Therefore, the highly accelerated differentiation on the rGONR grid was assigned to both its excellent capability in adsorption of the chemical inducers and physical stresses induced by the surface topographic features of the nanogrids.  相似文献   

14.
Reduced graphene oxide (rGO) with various surface structures was prepared by reducing graphene oxide (GO) with hydrazine hydrate (N2H4), sodium borohydride (NaBH4) and l ‐ascorbic acid, respectively. The resulting rGO were used to fabricate rGO/polypropylene (PP) nanocomposites by a melt‐blending method. The surface structure of rGO as well as multifunctional properties of rGO/PP nanocomposites were thoroughly investigated. It was shown that rGO with highest C/O ratio could be obtained by reducing GO with N2H4. The crystallization behaviors, tensile strength, thermal conductivity and thermal stability of rGO/PP nanocomposites were significantly improved with the increase of C/O ratio of rGO. For example, with only 1 phr (parts per hundred PP) rGO reduced by N2H4, the degree of crystallinity, tensile strength, maximum heat decomposition temperature and thermal conductivity of PP nanocomposite were increased by 6.2%, 20.5%, 48.0 °C and 54.5%, respectively, compared with those of pure PP. Moreover, the thermal degradation kinetics indicated that the decomposition activation energy of rGO/PP nanocomposites could be enhanced by adding rGO with higher C/O ratio. © 2018 Society of Chemical Industry  相似文献   

15.
Asian red ginseng was used for green reduction of chemically exfoliated graphene oxide (GO) into reduced graphene oxide (rGO). The reduction level and electrical conductivity of the ginseng-rGO sheets were comparable to those of hydrazine-rGO ones. Reduction by ginseng resulted in repairing the sp2 graphitic structure of the rGO, while hydrazine-rGO showed more defects and/or smaller aromatic domains. The ginseng-rGO sheets presented a better stability against aggregation than the hydrazine-rGO ones in an aqueous suspension. Whilst the hydrophobic hydrazine-rGO films exhibited no toxicity against human neural stem cells (hNSCs), the hydrophilic GO and ginseng-rGO films (as more biocompatible films) showed proliferation of the stem cells after 3 days. On the other hand, the hydrazine-rGO and especially the ginseng-rGO films exhibited more differentiation of hNSCs into neurons (rather than glia) than the GO film, after 3 weeks. The accelerated differentiation on the rGO films was assigned to their higher capability for electron transfer. Meanwhile, the better differentiation on the ginseng-rGO film (as compared to the hydrazine-rGO film) was attributed to its higher biocompatibility, more hydrophilicity and the π−π attachment of ginsenoside molecules (as powerful antioxidants) on surface of the reduced sheets.  相似文献   

16.
Ceramic matrix nanocomposites containing graphene possess superior mechanical properties. However, these nanocomposites are very difficult to be prepared using the conventional methods due to severe grain growth and simultaneous degradation of the graphene at high sintering temperatures and long dwell time. Herein, the dense ZrO2/rGO (reduced graphene oxide) nanocomposites are successfully fabricated by flash sintering of the green compacts consisting of ZrO2 nanoparticles and graphene oxide (GO) at 893–951℃ in merely 5 seconds under the alternating current (AC) electric fields of 130–150 V cm−1. The GO can be in situ thermal reduced during the flash sintering. The as-prepared ZrO2/rGO nanocomposites exhibit excellent mechanical properties. This study presents a green and simple approach to fabricate the dense ceramic matrix nanocomposites reinforced with graphene at low temperatures in a short time.  相似文献   

17.
Mg-doped ZnO/reduced graphene oxide (rGO) nanocomposites were synthesized using a facile and cost-effective sol-gel procedure to detect acetic acid vapor. Field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), ultraviolet-visible (UV–vis) diffuse reflectance spectroscopy, and photoluminescence (PL) analysis were utilized to characterize morphologies, compositions of the nanocomposites, and optical properties of the synthesized nanostructures. The gas sensing measurements of spin-coated Mg-doped ZnO/rGO thin films were carried out for a temperature range of 150–350?°C at various acetic acid vapor concentrations. It was found that the Mg-doped sample with 20?wt%/v of GO solution concentration exhibited the response/recovery time of 60?s/35?s with the best response of ~?200% for 100?ppm of acetic acid at 250?°C.  相似文献   

18.
A new type of reduced graphene oxide-encapsulated silicon nitride (Si3N4@rGO) particle was synthesized via an electrostatic interaction between amino-functionalized Si3N4 particles and graphene oxide (GO). Subsequently, the Si3N4@rGO particles were incorporated into a Si3N4 matrix as a reinforcing phase to prepare nanocomposites, and their influence on the microstructure and mechanical properties of the Si3N4 ceramics was investigated in detail. The microstructure analysis showed that the rGO sheets were uniformly distributed throughout the matrix and firmly bonded to the Si3N4 grains to form a three-dimensional carbon network structure. This unique structure effectively increased the contact area and load transfer efficiency between the rGO sheets and the matrix, which in turn had a significant impact on the mechanical properties of the nanocomposites. The results showed that the nanocomposites with 2.25 wt.% rGO sheets exhibited mechanical properties that were superior to monolithic Si3N4; the flexural strength increased by 83.5% and reached a maximum value of 1116.4 MPa, and the fracture toughness increased by 67.7% to 10.35 MPa·m1/2.  相似文献   

19.
We present a useful ammonia gas sensor based on chemically reduced graphene oxide (rGO) sheets by self-assembly technique to create conductive networks between parallel Au electrodes. Negative graphene oxide (GO) sheets with large sizes (>10 μm) can be easily electrostatically attracted onto positive Au electrodes modified with cysteamine hydrochloride in aqueous solution. The assembled GO sheets on Au electrodes can be directly reduced into rGO sheets by hydrazine or pyrrole vapor and consequently provide the sensing devices based on self-assembled rGO sheets. Preliminary results, which have been presented on the detection of ammonia (NH3) gas using this facile and scalable fabrication method for practical devices, suggest that pyrrole-vapor-reduced rGO exhibits much better (more than 2.7 times with the concentration of NH3 at 50 ppm) response to NH3 than that of rGO reduced from hydrazine vapor. Furthermore, this novel gas sensor based on rGO reduced from pyrrole shows excellent responsive repeatability to NH3. Overall, the facile electrostatic self-assembly technique in aqueous solution facilitates device fabrication, the resultant self-assembled rGO-based sensing devices, with miniature, low-cost portable characteristics and outstanding sensing performances, which can ensure potential application in gas sensing fields.  相似文献   

20.
《Ceramics International》2015,41(4):5798-5806
This work explored the synthesis of rGO sheets from graphene oxide (GO) using hydrazine solvent as reducing agent through chemical reduction. Meanwhile, GO films with a 2D structure were prepared from graphite flakes (starting material with an average flake size of 150 nm) by an Improved Hummer׳s method. Results showed that the chemical oxidation of graphite flakes carried out at room temperature could be used to prepare GO sheets in the initial stage. The conversion of GO into large-area rGO sheets with ~85% of carbon content could then be achieved by chemical reduction. RGO sheets with a lateral dimension of up to ~45 nm were obtained, which indicated the formation of an extremely thin layer of rGO sheets. A high degree of GO reduction was also realized using a high stirring speed (1200 rpm) for 72 h in a mixture of acids and potassium permanganate, resulting in a high carbon content of rGO with a large lateral dimension and area. Overall, our Improved Hummer׳s method with a high stirring speed (1200 rpm) for 72 h provided an easy approach to the preparation of large-area and ultrathin rGO sheets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号