首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The influence of milling and subsequent annealing on nickel-ferrite phase formation was investigated by X-ray diffraction (XRD). Microstructure and magnetic properties of NiFe2O4 were determined by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and vibration sample magnetometry (VSM). Single phase nanosized nickel-ferrite was obtained by 30 h mechanical alloying (MA) and subsequent annealing at 600 °C for 1 h. Magnetic properties of the milled powder were extensively affected by the annealing temperature. Considerable growth of the particles and necking by sintering resulted from annealing at 1000 °C.  相似文献   

2.
A facile direct precipitation method has been developed for the synthesis of multi-functional magnetic, microwave to heat responsive properties with Fe3O4 nanoparticles as the core and WO3  x as the shell. Transmission electron microscopy (TEM) images revealed that the obtained bi-functional nanoparticles had a core-shell structure and a spherical morphology. The average size was ~ 250 nm, and the thickness of the shell was ~ 15 nm. The X-ray diffraction (XRD) patterns showed that a cubic spinel structure of Fe3O4 core and the WO3  x shell were obtained. The nanoparticles showed both strong magnetic, and unique microwave to heat responsive properties, which may lead to development of nanoparticles with great potential for applications in drug targeting delivery, controlled release drug, photo- and microwave-thermal combination therapy and water treatment.  相似文献   

3.
《Ceramics International》2017,43(10):7508-7515
A novel hierarchical heterostructure consisting of porous NiO nanosheets and flower-like ZnO assembled by hexagonal nanorods was successfully fabricated by a simple two-step hydrothermal approach. Flower-like ZnO was obtained by the first step hydrothermal method. Through the second step hydrothermal method, porous NiO nanosheets grew on the surface of flower-like ZnO to realize integration of ZnO and NiO, so the p-n heterostructure between ZnO and NiO formed. The samples were investigated by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and energy dispersive X-ray (EDX). Gas sensing test results showed that the sensor based on NiO/ZnO composite exhibited superior sensing properties to acetone. The sensor response to 100 ppm acetone was about 205.14 at the optimum working temperature of 240 °C, and the response and recovery times were about 7 and 20 s, respectively. The enhanced response might be attributed to heterojunction and larger specific surface area provided by attached porous NiO nanosheets. The rapid response and recovery characteristics and improved selectivity attributed to the porous structure and good catalytic actions of NiO nanosheets.  相似文献   

4.
《Ceramics International》2016,42(8):9796-9803
The improved photocatalyst carbon-doped WO3/TiO2 mixed oxide was synthesized in this study using the sol–gel method. The catalyst was thoroughly characterized by X-ray diffraction (XRD), diffuse reflectance UV–vis spectroscopy, N2 adsorption desorption analysis, scanning electron microscopy coupled with energy dispersive X-ray analysis (SEM/EDX), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The photocatalytic efficiency of the prepared materials was evaluated with respect to the degradation of sodium diclofenac (DCF) in a batch reactor irradiated under simulated solar light. The progress of the degradation process of the drug was evaluated by high-performance liquid chromatography (HPLC), whereas mineralization was monitored by total organic carbon analysis (TOC) and ion chromatography (IC). The results of the photocatalytic evaluation indicated that the modified catalyst with tungsten and carbon (TWC) exhibited higher photocatalytic activity than TiO2 (T) and WO3/TiO2 (TW) in the degradation and mineralization of diclofenac (TWC>TW>T). Complete degradation of diclofenac occurred at 250 kJ m−2 of accumulated energy, whereas 82.4% mineralization at 400 kJ m−2 was achieved using the photocatalytic system WO3/TiO2-C. The improvement in the photocatalytic activity was attributed to the synergistic effect between carbon and WO3 incorporated into the TiO2 structure.  相似文献   

5.
《Ceramics International》2016,42(16):18318-18323
MoS2 thin films were prepared by radio frequency (RF) magnetron sputtering and then annealed in air. X-ray diffraction (XRD), field-emission electron scanning microscopy (FESEM) and transmission electron microscopy (TEM) were adopted to characterize the phase structure and surface morphology. Interestingly, upon thermal annealing in air, MoS2 thin films changed into α-MoO3 with mazy morphology, and the thin films were covered by MoO3 nano-sheets with a length of 30–50 nm and a width of 10 nm. α-MoO3 thin films with mazy morphology showed excellent response to NO gas at room temperature. The response of 5% and 92% was obtained at 5 ppm and 200 ppm, respectively, and the response and recovery times were 30 s and 1500 s. Moreover, the mazy structure of MoO3 exhibited good selectivity to NO gas with respect to SO2, NH3 and H2 gases. The high surface-to-volume ratio was the dominant factor for high sensing performance.  相似文献   

6.
Micro/meso-porous reduced graphite oxide (MMRGO) nanosheets were produced using precursor carbide-derived carbon (CDC), which was produced at a high temperature of 1200 °C, through a massive wet chemistry synthetic route involving graphite oxidation and microwave reduction. X-ray diffraction (XRD) and transmission electron microscopy (TEM) show that the MMRGO nanosheets were fabricated with 2–3 layers and ripple-like corrugations. N2 sorption isotherms confirmed that micro/meso-pores coexisted in the RGO sample from CDC. In the anode application of Li-ion batteries, this RGO sample had an enhanced capacity performance at the 0.1 C rate and 1 C rate, with ∼1200 mAh g−1 at the 100th cycle and ∼1000 mAh g−1 at the 200th cycle, respectively.  相似文献   

7.
Cr-doped bismuth ferrite (BiCrxFe1?xO3, BCFO) thin films were prepared by a sol–gel method with the value of x varying from 0 mol% to 10 mol%. The structures of the BCFO thin films were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) analysis was employed to represent the surface and cross-sectional morphologies of the thin films. Dielectric, electrical, ferroelectric and magnetic properties were measured by HP4294A, Keithley 4200, RT6000 and 6700 Magnet Controller at room temperature, respectively. The dielectric behaviour and insulation are improved in 3% Cr-doped BFO thin film which may be due to the reduced concentration of oxygen vacancies by 3% Cr doping.  相似文献   

8.
A simple one-step solid-state reaction has been introduced to synthesize CdS nanoparticles. The as-prepared CdS product was characterized by X-ray powder diffraction (XRD), BET surface area measurement, field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), particle size distribution (PSD) and UV–vis absorption spectrum. The experiment results reveal that the CdS product was composed of nanoparticles about 60 nm in diameter, of which specific surface area is 78.02 m2/g. The photocatalysis results indicate that the CdS nanoparticles exhibit excellent photocatalytic activity for the degradation of rhodamine B under UV irradiation. Nearly 95% of rhodamine B was degraded after 60 min of irradiation, higher than that of P25, which is due to the large specific surface area and mesoporous structure.  相似文献   

9.
《Ceramics International》2017,43(16):13581-13591
The nanocomposites of WO3 nanoparticles and exfoliated graphitized C3N4 (g-C3N4) particles were prepared and their properties were studied. For this purpose, common methods used for characterization of solid samples were completed with dynamic light scattering (DLS) method and photocatalysis, which are suitable for study of aqueous dispersions.The WO3 nanoparticles of monoclinic structures were prepared by a hydrothermal method from sodium tungstate and g-C3N4 particles were prepared by calcination of melamine forming bulk g-C3N4, which was further thermally exfoliated. Its specific surface area (SSA) was 115 m2 g−1.The nanocomposites were prepared by mixing of WO3 nanoparticles and g-C3N4 structures in aqueous dispersions acidified by hydrochloric acid at pH = 2 followed by their separation and calcination at 450 °C. The real content of WO3 was determined at 19 wt%, 52 wt% and 63 wt%. It was found by the DLS analysis that the g-C3N4 particles were covered by the WO3 nanoparticles or their agglomerates creating the nanocomposites that were stable in aqueous dispersions even under intensive ultrasonic field. Using transmission electron microscopy (TEM) the average size of the pure WO3 nanoparticles and those in the nanocomposites was 73 nm and 72 nm, respectively.The formation of heterojunction between both components was investigated by UV–Vis diffuse reflectance (DRS) and photoluminescence (PL) spectroscopy, high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), photocatalysis and photocurrent measurements. The photocatalytic decomposition of phenol under the LED source of 416 nm identified the formation of Z-scheme heterojunction, which was confirmed by the photocurrents measurements. The photocatalytic activity of the nanocomposites decreased with the increasing content of WO3, which was explained by shielding of the g-C3N4 surface by bigger WO3 agglomerates. This study also demonstrates a unique combination of various characterization techniques working in solid and liquid phase.  相似文献   

10.
《Ceramics International》2017,43(17):14726-14731
Ultrafine (Ti, W, Mo)(C, N)-(Ni, Co) cermet powders were rapidly synthesized from various metal oxides, mainly anatase-TiO2, by spark plasma assisted carbothermal reduction-nitridation (SPCRN) at low temperature. The phase evolution of the SPCRN reaction was investigated using X-ray diffraction (XRD) and the microstructure of the product powders was observed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). NiO, Co3O4 and MoO3 were converted to Ni, Co and Mo2C by CR reaction at temperatures below 900 °C. WO3 was successively transformed from W2C to WC by CR reaction up to 1100 °C. Finally, at up to 1350 °C, (Ti, W, Mo)(C, N) formed into the sequence of TiO2, Ti4O7, Ti3O5, Ti(O, N), Ti(C, N), (Ti, W)(C, N) and (Ti, W, Mo)(C, N). The crystal structure of (Ti, W, Mo)(C, N)-(Ni, Co) cermet powders was analyzed by the Rietveld method and transmission electron microscopy (TEM). The findings demonstrated that the pure (Ti, W, Mo)(C, N)-(Ni, Co) cermet powders with grain size of below 0.5 µm were synthesized from metal oxides by SPCRN reaction at 1400 °C for 10 min.  相似文献   

11.
The CNTs–WO3 hybrid nanostructures were fabricated by solvothermal synthesis. The morphologies, phase structures and optical properties of the nanostructures were investigated by TEM, XRD, UV–vis DRS and XPS respectively. The CNTs–WO3 hybrid nanostructures exist higher photocatalytic activity than pure WO3 nanosheets and the mechanical mixture of WO3 and CNTs for the degradation of methyl blue (MB) under visible light. This is attributed to their large surface area, absorption enhancement in visible light region and effective separation of electrons and holes. The presence of radical scavengers such as KI, Fe3 + and methanol in photocatalytic experiments demonstrates that photogenerated electrons are responsible for the photocatalytic degradation of MB on CNTs–WO3.  相似文献   

12.
《Ceramics International》2017,43(16):13185-13192
WO3 is one of the inspiring sensing materials that show high response to O3; an efficient fabrication of WO3 film with incorporation of complementary additives is essential for enhanced sensitivity. Here we report film deposition by liquid flame spraying, characterization of nanostructured WO3-reduced graphene oxide (rGO) composites and their gas-sensing activities to O3. The starting feedstock was prepared from WCl6 and rGO for pyrolysis synthesis by flame spraying. Nano-porous WO3-rGO films were successfully fabricated and characterized by transmission electron microscopy, field emission scanning electron microscopy, Raman spectrometry, thermal analyses and X-ray diffraction. Nanosized WO3 grains exhibited oriented nucleation on rGO flakes whereas rGO retained intact its nano-structural features after spraying. Constrained grain growth of WO3 of 60–70 nm in size was realized in the rGO-containing films with as compared to ~220 nm in the pure WO3 film. The WO3-rGO film sensors showed quicker response to O3 and faster recovery than rGO-free WO3 film sensors. Addition of rGO in 1.0 wt% or 3.0 wt% in the films caused a significantly reduced effective working temperature of the film sensors from ~ 250 °C to ~ 150 °C.  相似文献   

13.
《Ceramics International》2016,42(6):7210-7215
VC–Co nanocomposite powders were obtained by mechanochemical combustion synthesis from a mixture of V2O5, Co3O4, C and Mg powders. The synthesized powders were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). VC–Co nanocomposite was directly produced after 10 min milling through a mechanically induced self-sustaining reaction without further heat treatment. TEM analysis showed that a nanostructured powder with a mean particle size of 100 nm was procured in the sample milled for 10 min.  相似文献   

14.
The dielectric properties of Cr + La co-doped CaCu3Ti4O12 ceramics prepared by a solid-state reaction method were evaluated and compared to Cr-doped, La-doped, and parent CaCu3Ti4O12 (CCTO). Their structure and grain size were evaluated by X-ray diffraction and scanning electron microscopy, respectively. No secondary phase was detected based on the XRD analysis. The results show that, the room temperature dielectric loss of the co-doped samples is reduced to 43% compared to CCTO and their dielectric permittivity is higher than the un-doped, Cr-doped, and La-doped samples at frequencies over 325 kHz, 30 kHz, and 12 Hz, respectively. Furthermore, the temperature stability of the co-doped sample is significantly more convenient than that of CCTO, and its dielectric loss is three times lower. The results also indicated that the co-doping method is effective in reducing the dielectric loss, still maintaining the high dielectric permittivity.  相似文献   

15.
Dumbbell-shaped ZnO microstructures have been successfully synthesized by a facile hydrothermal method using only Zn(NO3)2·6H2O and NH3·H2O as raw materials at 150 °C for 10 h. The results from X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM) show that the prepared ZnO samples exhibit dumbbell-shaped morphology and hexagonal wurtzite structure. The length of ZnO dumbbells is about 5–20 μm, the diameters of the two ends and the middle part are about 1–5 μm and 0.5–3 μm, respectively. The dumbbell-shaped ZnO microstructures may be formed by self-assembly of ZnO nanorods with 1–5 μm in length and 100–200 nm in diameter. The photoluminescence (PL) spectrum of dumbbell-shaped ZnO microstructures at room temperature shows three emission peaks at about 362, 384 and 485 nm.  相似文献   

16.
Single phase tungsten carbide nanoparticles (WC-NPs), (mean particle diameter 5.4 nm), distributed over carbonized polyaniline (C-PANI) nanotubes/nanosheets were synthesized by a solid state reaction between WO3 and nitrogen-rich carbonized polyaniline at 1000 °C in a reducing atmosphere. The resulting composite was characterized by X-ray diffractometry, electron microscopy, thermogravimetry in oxidizing and reduction atmospheres and elemental analysis. We suggested that the synthesis of WC as a single phase was facilitated by reactive C atoms with dangling bonds, formed upon nitrogen removal.  相似文献   

17.
The present study focuses on the synthesis of nanocomposite gamma alumina (γ-Al2O3), boehmite and multi- walled carbon nanotubes (MWCNTs) via a solvothermal procedure. The method is based on the ex situ filling of opened CNTs by liquid reactants. The microstructure and morphology of the synthesized nanocomposite Al2O3@CNTs/Al2O3 was characterized by high resolution transmission electron microscopy (HRTEM), transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) and N2 adsorption–desorption analysis.Based on the experimental results, it was determined that the volume ratio of γ-Al2O3/MWCNTs and the surface tension of the solvent both greatly influence the morphology of the nanocomposite. The resultant MWCNTs were coated and filled by homogeneous and uniform boehmite and γ-Al2O3 layers and nanoparticles with thicknesses of 1–3 nm and diameters of 20–40 nm, when the volume ratio of γ-Al2O3/MWCNTS is 1 and the surface tension of the solvent is approximately 26 mN m?1 at 20 °C, far below the maximum value (100–200 mN m?1) for MWCNT filling.  相似文献   

18.
《Ceramics International》2016,42(14):15881-15888
In this study, a series of undoped and Eu-doped SnO2 nanofibers were synthesized via a simple electrospinning technique and subsequent calcination treatment. Field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) were carefully used to characterize the morphologies, structures and chemical compositions of these samples. The results reveal that the as-prepared nanofibers are composed of crystallite grains with an average size of about 10 nm and Eu3+ ions are successfully doped into the SnO2 lattice. Compared with pure SnO2 nanofibers, Eu-doped SnO2 nanofibers demonstrate significantly enhanced sensing characteristics (e.g., large response value, short response/recovery time and outstanding selectivity) toward acetone vapor, especially, the optimal sensor based on 2 mol% Eu-doped SnO2 nanofibers shows the highest response (32.2 for 100 ppm), which is two times higher than that of the pure SnO2 sensor at an operating temperature of 280 °C. In addition, the sensor exhibits a good sensitivity to acetone in sub-ppm concentrations and the detection limit could extend down to 0.3 ppm, making it a potential candidate for the breath diagnosis of diabetes.  相似文献   

19.
《Ceramics International》2016,42(3):4063-4071
The graphitic carbon nitride (g-C3N4) was rapidly synthesized via direct high-energy microwave heating approach. During the preparation process, only low-cost melamine and artificial graphite powders were used, without any metal catalysts or inert protective gas. The microstructure was investigated by using X-ray diffraction (XRD), Flourier transformed infrared (FT-IR), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM). The spectra of XRD and HRTEM indicated that the obtained g-C3N4 had a high crystallinity. The optical spectra covering Photoluminescence (PL) and Ultraviolet-visible (UV–vis) were also measured at room temperature. PL peak and UV–vis absorption edge of the g-C3N4 were shown at 455 nm and 469 nm, respectively, indicating visible-light photocatalytic property. Finally, the photocatalytic activity of g-C3N4 was investigated and evaluated as photocatalyst for the photo-degradation of Rhodamine B (RhB) and Methyl Orange (MO) in aqueous solution under visible-light (λ>420 nm) irradiation, respectively. Results indicated that the g-C3N4 sample displayed an excellent performance of removing of RhB and MO due to the improved crystallinity and large surface area of 126 m2/g. After the visible-light photocatalytic reaction for 40 min, the decolorization ratios of RhB and MO reached up to 100% and 94.2%, respectively.  相似文献   

20.
《Ceramics International》2017,43(10):7942-7947
Arrayed In2O3 nanosheets were synthesized directly via a two-step solution approach on an Al2O3 ceramic tube. Their morphology and structure were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV–Vis absorption spectroscopy, and scanning electron microscopy (SEM). The results reveal that the length of each nanosheet is about 1 µm, the width of the bottom of nanosheet is about 200 nm. Importantly, the In2O3 nanosheets with large specific surface area possess highly sensing performance for ethanol detection. The response value to 100 ppm ethanol is about 45 at an operating temperature of 280 °C, and the response and recovery time are extremely short. It is expected that the directly grown In2O3 nanosheets with large specific surface area and excellent sensing properties will become a promising functional material in monitoring and detecting ethanol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号