首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以某C形小曲线半径弯箱梁桥为工程背景,采用有限元软件Midas Civil建立桥梁的动力分析模型,采用动态时程分析法进行桥梁的地震响应分析,通过改变地震动水平输入角度获得结构的最大内力响应及最不利地震动输入方向,并对比了五种支座布置方式下桥梁地震响应的差别。研究表明曲线桥梁的地震响应受地震动输入方向影响较大,设计时应全面考虑各输入方向下桥梁结构的最大响应;固定支座的数量和布置位置对桥梁结构的动力特性、最大地震响应和最不利输入方向有很大影响。  相似文献   

2.
为研究地震作用下含软弱夹层隧道洞口仰坡的动力响应特性,针对含软弱夹层隧道洞口仰坡开展大型振动台试验研究,通过分析水平和竖向激振作用下洞口段仰坡和衬砌模型动力响应和破坏特征,得到以下结论:水平向激振作用下,仰坡沿坡面向上存在明显加速度放大效应,软弱夹层对竖向加速度激振时仰坡动力响应有显著影响;越接近临坡面,衬砌结构加速度响应和越大,并且洞口段隧道衬砌拱顶加速度峰值最大,仰拱最小,衬砌结构受力状态复杂;竖向加速度激振时,软弱夹层上覆模型土出现松动,坡脚土体出现挤压、掉块,仰坡整体上保持稳定;在水平向激振作用下,而含软弱夹层仰坡则在坡脚土体先被挤压破碎,然后坡顶表面沿软弱夹层位置出现张拉裂缝,上覆土体沿软弱夹层滑动,最后土体大规模崩塌、滑落。竖向和水平激振力作用下,衬砌45°方向应变幅值最大,衬砌洞口段设防长度为25 m。该研究成果可以为山岭隧道洞口段边坡抗减震研究和设计提供参考。  相似文献   

3.
以一四跨连续箱梁为背景,建立了三维有限元模型,采用m法模拟了土体对桩基的约束作用,计算了不同桩基冲刷深度下结构动力特性和地震响应,研究了冲刷作用对结构地震响应的影响。结果表明:冲刷作用对冲刷桩基纵向地震受力不利,对未冲刷桩基纵向地震内力影响较小;无减隔震支座情况下,冲刷作用减缓未冲刷桩基横向地震受力;采用减隔震支座将加剧冲刷作用对冲刷桩基地震内力的不利影响。  相似文献   

4.
梁建文  朱俊 《岩土工程学报》2018,40(11):1977-1987
基于Biot孔隙介质理论,提出了饱和软土场地中地下结构非线性地震响应分析的一个有限元–间接边界元(FEM-IBEM)耦合方法。方法考虑了饱和土骨架与孔隙水的动力耦合作用及饱和土–结构动力相互作用,并通过等效线性化方法考虑土体的非线性。该耦合方法的特点之一是有限元子域和间接边界元子域相互独立,非常适合并行计算,提高计算效率;特点之二是能够同时考虑有限元子域(近场)和间接边界元子域(远场)的土体非线性。通过与文献结果对比,验证了FEM–IBEM耦合方法的正确性和计算精度。以天津滨海地区一典型深厚饱和软土场地中两层双跨地铁车站为例,计算了地铁车站结构的地震内力和变形,并比较了饱和土体线性和非线性情况下地铁车站地震响应的差别,和饱和土体模型和单相土体模型情况下地铁车站地震响应的差别。研究表明:土体非线性对地铁车站结构的地震内力和变形具有显著影响;饱和土骨架和孔隙水的动力耦合作用对地铁车站结构地震内力和变形也有明显影响。  相似文献   

5.
基于ABAQUS软件建立了地表结构—土—下穿地铁车站结构大型三维有限元数值模型,数值分析了下穿地铁车站结构在不同类型地震波作用下的地震响应规律,并将下穿一体化地铁车站结构与下穿密贴地铁车站结构计算结果进行对比分析,探讨了下穿地铁车站结构的地震响应特性。结果表明:下穿密贴地铁车站结构的整体性相对较差,车站结构与上部结构出现了滑移现象,车站顶层层间相对水平位移较小,其余层的层间相对水平位移较大;下穿一体化地铁车站结构受力相对较大,各构件连接处及各层中柱依然是抗震设防的重要部位,建议下穿地铁车站中柱采用高强高延性的钢管混凝土柱或型钢混凝土组合柱;中远场地震波能够对中软土场地中下穿地铁车站结构的位移、加速度和内力等动力特性产生显著的影响。  相似文献   

6.
对地铁地下车站结构的抗震问题进行研究,对于降低地铁结构在遭遇强震作用时的经济损失和人员伤亡具有十分重要的意义。通过大型岩土工程有限元分析软件MIDAS-GTS建立了地下3层车站结构的三维数值分析模型,分别采用反应位移法和动力时程分析法对车站结构进行了地震反应分析,建模过程中考虑土体与地下车站结构动力相互作用机理,得到了结构在真实地震荷载作用下的内力和变形变化规律。研究得出结论:车站结构最大层间位移角在规范限值要求的范围内,结构抵抗侧向变形能力良好;车站结构中柱与顶底板连接节点处、侧墙与各层楼板相交处、结构顶底板与侧墙相交位置附近、顶底板边跨跨中等出现了较大内力响应,为抗震薄弱部位,需加强抗震措施以提高结构整体抗震能力。研究结果可为类似地铁地下车站结构的抗震分析提供借鉴。  相似文献   

7.
长周期地震动与长周期结构的地震反应是近年工程中研究的热点。本文首先选取了一个典型的含有软弱夹层的II类场地模型,分别输入普通与长周期的基岩记录,计算场地表面地震动及反应谱,并与标准Ⅱ类场地反应谱进行了对比,研究这类场地条件对长周期地震动的影响。再以某一典型长周期高层框架-核心筒结构为背景,分别以这三种地震动作为结构输入,采用SAP2000有限元分析软件,进行结构地震反应分析。研究结果表明:软弱夹层场地减弱了输入的普通地震波加速度峰值,但对其作用下的长周期建筑结构存在不利影响;此外,软弱夹层场地放大了长周期地震动的长周期成分,与上部结构发生共振,使得上部结构的地震反应剧烈。  相似文献   

8.
通过管桩振动台模型试脸,研究了地震作用下单桩基础结构体系的上部结构加速度放大系数、桩顶最大剪力和最大倾覆弯矩响应幅值的分布规律及其影响因素。研究表明,管桩结构体系的各种地震响应不仅与输入的加速度幅值有关,不同的上部结构和场地的动力特性也影响管桩基础地震响应幅值的变化趋势;坚硬场地上结构的地震反应与结构有关,软弱场地上结构的地震响应与场地有关;实际桩-土-上部结构体系不是一个简单结构,必须整体考虑上部和下部结构的动力特性。  相似文献   

9.
高层结构地震输入的合理性对结构抗震设计及地震反应产生重要影响。本文以一典型高层框架结构及其所处场地为参考,建立有软弱夹层场地模型及具有同一卓越周期均匀场地模型,研究该软夹层基础对结构地震输入的影响。由于软弱夹层的存在本文采用了有别于传统的分段等效线性化方法预测地震输入,并与传统的等效线性化方法预测的地震输入对比,研究两种等效线性模型地震输入的差异及软弱夹层存在对地震输入的影响。进一步基于预测地震动分别计算了有无软弱夹层存在下该典型高层框架结构反应,研究软弱夹层存在对结构地震反应的影响。本文结果显示虽然软弱夹层存在会使结构地震动输入时程峰值变低,但结构反应却加剧。分段等效线性化输入模型的地震动加速度峰值普遍大于传统等效线性化模型,但传统等效线性方法预测的地震动计算所得的结构反应更加剧烈。  相似文献   

10.
针对现行地铁地下车站结构的常见叠合墙式结构设计方法和抗震分析方法中不考虑地下连续墙存在的现实情况,基于数值计算方法,建立了土–地下连续墙–地下结构静动力耦合非线性相互作用有限元分析模型,分析了地下连续墙存在时对地铁地下车站主体结构地震反应的影响规律。研究结果表明:地下连续墙的存在对地铁车站主体结构的抗水平侧移能力有一定的提高作用,使得其顶底间的最大相对位移有显著减小。从这一结果出发,似乎可以认为地下结构抗震分析中不考虑地下连续墙时可看作是地下结构的地震安全储备。但是,地下连续墙的存在明显改变地下结构的整体变形性态,进而导致地下结构的内力发生重分布,尤其使得大震时车站结构的顶、中、底板一些关键部位的地震损伤程度明显比不考虑地下连续墙时要严重;同时,地下连续墙对车站结构顶底板表面与土体间的相对摩擦剪力也产生明显的影响。  相似文献   

11.
地铁车站结构三维地震响应及土非线性分析   总被引:2,自引:0,他引:2  
建立了上海软土地铁车站结构的三维计算模型,利用FLAC3D有限差分软件分析了上海软土的非线性特性、软土地铁车站结构的受力状态以及地震荷载引起结构内力的增加幅度,得到的地铁车站在地震动时的动力响应规律可供工程实践参考.  相似文献   

12.
为了研究软弱夹层特性对于边坡动力响应的影响,利用FLAC3D建立某一含软弱夹层顺倾边坡的模型进行动力加载.归纳出如下结论:波阻抗反映了应力波在岩石中穿透和反射的能力,响应与边坡的波阻抗比成正比;随着夹层厚度的增加,坡肩的动力响应随之增大,坡面放大系数整体呈现出相对先慢后快再慢的增大趋势;坡肩的响应对夹层倾角不敏感,但随...  相似文献   

13.
长距离大跨度结构进行地震响应分析时采用一致激励是不符合实际情况的.对长距离钢栈桥分别进行了一致激励和行波加载地震响应分析,结果表明行波效应对结构地震响应产生了明显的影响,但是对结构内力的影响并非都是不利的.行波效应对结构内力的影响程度与视波速密切相关,较小的视波速对结构内力的影响更为显著.在视波速为50m/s的行波加载下,最不利的结构内力较一致激励下增加了约20%.  相似文献   

14.
穿越断层破碎带隧道动力响应特性分析   总被引:2,自引:1,他引:1  
 通过数值分析和振动台模型试验相结合的方法,研究穿越断层破碎带隧道在地震荷载作用下横向内力分布和纵向动力响应特性。结果表明:围岩条件是影响衬砌地震内力的重要因素,围岩越差,地震作用产生的内力越大,其抗震性能越差;在横断面方向,不同围岩条件下衬砌内力均在共轭45°方向最大,为隧道抗震最不利位置;在纵断面方向,隧道位于围岩与断层破碎带接触面时,衬砌地震内力急剧增大;当隧道断面沿纵向远离断层破碎带一定距离后,其内力趋于一个稳定值。研究结果可为穿越断层破碎带隧道结构抗震设防提供参考。  相似文献   

15.
为研究土-结构动力相互作用系统的地震反应情况,在50g的离心加速度条件下,采用Kobe波作为地震输入,进行两种埋深情况下砂土地基中较大断面地下结构的离心机振动台模型试验。介绍试验设计方案,给出加速度、土压力、位移和应变反应的量测结果。试验结果表明:结构最大弯曲应变发生在柱上端,说明柱是地下结构抗震最不利构件,且柱上端相对于柱下端更为不利;地震作用下结构所承受的总土压力有所增加,并且在地震作用后维持在较高的水平,最大土压力增量与最大总土压力均发生在底板角点处;埋深对地下结构的地震反应有重要影响,本次试验中,结构在对应于原型埋深为5m时的受力情况相比于埋深2.5m的情况更为不利;辅助观测断面与主观测断面相同位置测点的附加弯曲应变峰值较为接近,并且应变反应波形较为一致,表明结构模型地震反应的整体性较好。  相似文献   

16.
针对目前地铁地下车站结构抗震性能研究中不考虑地下连续墙存在的现实问题,通过建立土–地下连续墙–复杂异跨地铁车站结构静动耦合非线性相互作用的有限元数值模型,对比分析了无地下连续墙、含单层地下连续墙及含双层地下连续墙等不同情况下异跨地铁地下车站结构的地震动力反应特征。结果表明:地下连续墙的存在仅在地震强度较小时能够显著提高车站主体结构的抗水平侧移能力,当地震强度较大时结构的水平位移增大明显;从结构层间位移的角度看,结构下层的层间位移涨幅最大,不考虑地下连续墙存在的计算结果将偏于危险;地下连续墙加强了地铁车站结构的抗侧移刚度,致使车站结构整体变形性态和内力分布发生重大变化,其中结构侧墙端部应力水平明显减小,各楼板端部的应力水平明显增大;本文计算工况中,异跨车站结构的下层中柱是抗震设计时的薄弱位置,其中以双层地下连续墙工况时的结构下层最为危险。  相似文献   

17.
地震作用下大型地铁车站结构三维动力反应分析   总被引:1,自引:0,他引:1  
引入三维等效黏弹性边界单元,阐述波动散射问题的自由波场输入方法,推广应用于三维水平成层半空间模型,采用集中有限元质量模型和有限差分的概念将地震动场转化为施加在人工边界节点上的等效荷载。基于某大型地铁车站,利用大型通用有限元ABAQUS软件建立考虑土–结构动力相互作用的三维有限元整体计算模型,通过局部人工边界的施加,实现了开放系统向封闭系统的转换,对土–地铁车站结构动力相互作用的整体三维模型进行模态分析,得到车站以及地基的振型特征。分析地铁车站结构在SV波及P波地震波作用下的反应,得到相应的内力分布规律和结构不利位置。从分析结果可以看出,地震波横向SV波输入时对车站结构最不利,结构刚度突变位置的构件内力也存在突变,而P波对结构的轴力影响较大。  相似文献   

18.
明挖车站常采用地连墙作为基坑支护形式。地连墙可以是与车站侧墙(衬墙)之间有连接的叠合墙,也可以是无连接的复合墙。使用阶段,叠合墙与衬墙共同受力,主体结构计算分析时要考虑其影响。复合墙与衬墙之间通常设置防水层,主体结构计算是否需要考虑其作用?有无复合墙对主体结构哪些方面分别有多大影响?为研究此问题,本文以某地下二层单柱双跨矩形框架车站为例,对比分析车站主体结构在多荷载工况下,有无围护墙参与时的内力变化情况;采用反应位移法,对比分析车站在地震作用下,有无围护墙参与时的不同响应特征。根据分析结果并结合工程经验,提出车站结构在设计时的注意事项,为后续同类工程设计提供参考。  相似文献   

19.
为研究不同初始几何缺陷对单层球面网壳结构地震承载力的不利影响,根据"拟壳法"的内力状态,提出了弯曲应力为主杆件数量占有效杆件总数的百分比最大,作为网壳最不利缺陷的判别准则.基于该准则,以跨度80m的K8型单层球面网壳为例,开展了考虑最不利高阶模态缺陷的网壳结构地震承载力影响分析.结果表明,网壳结构最不利缺陷一般出现在高阶屈曲模态;相比最低阶屈曲模态缺陷,最不利高阶模态缺陷计算所得的网壳结构地震动力响应显著增大,结构地震承载力明显降低;最不利缺陷的判别准则只需考虑前20阶屈曲模态范围,即可保证网壳结构地震承载力的计算精度和计算效率.  相似文献   

20.
结构在进行施工阶段受力分析时,更多的还是考虑在竖向荷载作用下结构的位移和内力变化情况。在水平方向,尤其在进行地震动力分析时,传统的设计方法是将结构整体作为研究对象,实际上结构的刚度是在不断变化的,因此有必要对结构进行水平方向的施工阶段分析。文章基于有限元分析软件Etabs,通过对4层框架结构和10层框筒结构,分别考虑在一次加载和逐层加载作用下进行动力弹塑性分析,比较不同初始工况作用下结构的最大层间位移角和最大层间剪力的变化来分析其对结构的影响程度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号