首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
AQC锅炉提供超过余热发电所需热量的60%,是余热发电的主导因素;SP锅炉对余热发电所提供的热量有限,要增加余热发电量,应增加AQC锅炉的可用热;增加AQC锅炉的可利用热量,应提高篦冷机的回收效率,解决篦冷机"风短路"、中高温段风量偏低、低温段风量过剩的问题;AQC锅炉取风不宜过高,避免造成二、三次风量不能满足煤的燃烧需求。  相似文献   

2.
替代燃料与燃煤的C、H、O和水分、挥发分的含量差异导致其在水泥窑高温焚烧系统中的表现有明显差异,包括燃烧空气量、燃烧烟气量、有效热利用率等。在实际工业生产运行中,不能机械地将替代燃料的热量与煤粉热量进行等量核算。替代燃料的应用将导致系统风量及整体热耗的增加,会大幅度增加窑尾余热发电量。另外,替代燃料的品质关系到燃煤用量的降低幅度。  相似文献   

3.
循环流化床锅炉具有高效、低污染、煤种适应性广等优点。但我国流化床锅炉普遍存在着飞灰含碳量高,锅炉燃烧效率达不到设计值的问题。概述了影响飞灰含碳量的主要因素:如煤种、燃煤的粒径及风量等,重点探讨了燃煤的粒径对飞灰含碳量的影响,提出了维持锅炉稳定,降低飞灰含碳量,提高燃烧效率的一些措施。  相似文献   

4.
粉煤灰中的残余碳   总被引:4,自引:0,他引:4  
粉煤灰中的残余碳是燃煤锅炉中煤未完全燃烧所产生的固体废弃物。残余碳的形成主要与燃料煤的组成和性质、锅炉特点、燃烧温度、空气量(燃烧时的氧气供给量)及燃烧时间(O工在锅炉内的停留时间)等因素有关。残余碳通常以单体半焦或焦炭、粘结在粉煤灰颗粒表面或包裹在粉煤灰颗粒中等几种形式存在,残余碳的粒度分布、比表面积、H和O的含量都有其特殊性。粉煤灰中的残余碳,不仅能反映锅炉的运行情况、影响锅炉烟气中COX的含  相似文献   

5.
王志强 《洁净煤技术》2020,26(2):137-144
燃煤锅炉内结焦会对锅炉运行的安全性和经济性造成极大损害,因而分析影响燃煤锅炉结焦的因素,进而有效预防燃煤锅炉结焦至关重要。在实际应用中,针对影响燃煤锅炉结焦的不同因素,可采取不同的预防措施。研究发现煤的灰熔融性温度、煤粉颗粒大小、锅炉燃烧气氛、一二次风动力场、锅炉截面热负荷和锅炉热负荷等都会影响燃煤锅炉结焦。为了解决某地区煤粉工业锅炉预燃室、炉膛、对流受热面大面积燃烧结焦问题,笔者结合燃煤锅炉燃烧结焦的机理,先后采取调整燃烧气氛、增大二次风刚性、减小煤粉颗粒粒径、更换孙家岔煤粉等措施对不同条件下的结焦现象进行对比分析,发现煤种、煤粉粒径大小是影响某地区煤粉工业锅炉燃烧结焦的因素。通过SEM-EDS(扫描电镜和能谱分析)对锅炉焦块进行微观形貌与元素组成分析,现场取样锅炉现用煤粉和孙家岔煤粉进行煤质及灰成分对比分析,并根据灰成分进行结渣性判别指标计算,结果表明锅炉燃烧现用煤种灰熔融性温度较低,煤灰软化温度Ts为1 170℃,小于1 200℃,为易熔煤,容易结渣,属于典型的易结焦煤种;结渣性判别指标计算结果显示,4项指标评价为"严重",1项指标评价为"中等",结渣性严重。综合分析认为:锅炉燃烧煤种发生改变,煤的灰熔融温度较低是影响某地区煤粉工业锅炉燃烧结焦的最本质因素。为进一步解决现场实际问题,采取破坏煤灰中酸碱平衡,提升煤的灰熔融温度,配合调节煤粉粒径等措施,如对锅炉现用煤种掺混5%的石英,提高煤灰中Si O2含量,掺混后煤粉的灰熔融温度达到1 280℃,提高了110℃;调大煤粉磨机频率,从19 Hz增大到22 Hz,煤粉粒度(200目,0.075 mm)过筛率从70%增大到85%。经过上述调整后,锅炉运行平稳,结焦状况显著改善,燃烧调整措施取得了较好的效果。  相似文献   

6.
为了深入了解水煤浆流化燃烧过程的规律,以"小室"为基础,结合流化床内气固两相流动及传热、水煤浆燃料的热解、挥发分及焦炭燃烧、污染物生成等子模型,建立了水煤浆在流化床锅炉中燃烧的综合数学模型。分析了当水煤浆流化燃烧装置锅炉负荷、过量空气系数及燃料中的挥发分份额等参数发生变化时炉内有关参数沿炉膛高度方向的变化规律。研究结果表明,与燃煤流化床锅炉相比,水煤浆燃烧锅炉炉膛底部的温度明显较低。另外,锅炉负荷越大,炉内温度越高,燃烧条件越好;过量空气系数对燃烧的影响并不是单调变化关系;煤种挥发分越高越有利于燃料的燃烧。  相似文献   

7.
随着国家对燃煤电厂大气污染物的排放要求日益严格,循环流化床锅炉因为煤种适应性好,大气污染物排放量低而越来越受到重视。为研究循环流化床大气污染物的排放规律,并对实际运行提供科学依据,从循环流化床锅炉燃烧机理入手,将入炉煤分为挥发分和待燃烧的即燃碳。SO2与NOx的生成也随之分为2部分:一部分随挥发分燃烧立即生成,另一部分随即燃碳燃烧生成。炉内SO2脱除量主要重视钙硫比,而炉内NOx自还原量则主要与炉内即燃碳量和一氧化碳浓度相关。以此为基础推导出了脱硫塔入口SO2浓度与NOx浓度模型。模型在某330 MW亚临界循环流化床的运行数据上得到验证,模型计算值与实际值拟合度较好,且较实际值提前2~4 min,消除了由于大气污染物测点位置原因带来的测量延迟,具有很好的预测效果。探究了炉内即燃碳量与脱硫塔入口SO2浓度和SNCR入口NOx浓度之间的关系,计算结果表明,在脱硫剂变化不大的情况下,即燃碳量变化趋势与脱硫塔入口SO2浓度变化趋势相同,与SNCR入口NOx浓度变化趋势相反。最后在原有运行数据上改变了风量和煤量后利用模型进行计算,结果表明煤量不变而风量提升会降低脱硫塔入口SO2浓度,但会提高SNCR入口NOx浓度,而煤量提升对大气污染物排放浓度的影响与风量提升相反,该计算结果对实际运行有一定指导作用。  相似文献   

8.
通过锅炉燃烧调整,提高锅炉效率,防止锅炉结焦,根据锅炉的实际负荷和现有煤种,通过调整锅炉的一、二次风配风、制粉系统优化调整,实现锅炉燃烧系统优化运行。  相似文献   

9.
为研究不同煤种在的煤粉工业锅炉上的适应性,笔者分别选取神木煤、山东本地煤、兰炭三种燃料在济南某热源厂70 MW燃煤锅炉上开展试验研究,考察了不同煤种的燃烧性能对工业锅炉运行状况的影响,分析锅炉长时间持续运行时点火稳定性、炉膛温度、SCR入口烟温、排烟温度以NOx初始排放变化趋势,结果表明,不同煤种的点火稳定性差异不大,均具有较好的点火性能。当锅炉满负荷运行时,本地煤种排烟温度比神木煤高20℃左右,NOx初始排放比神木煤低10%,兰炭燃烧炉膛温度比神府煤高10%左右,NOx初始排放在250~350 mg·Nm-3,比神木煤低30%。  相似文献   

10.
曹娜  余圣辉  许豪  张成 《洁净煤技术》2021,27(1):307-315
混煤掺烧是控制燃煤砷排放的有效方式,但由于缺乏相关的配煤模型,限制了该技术的应用。根据燃煤过程中砷的挥发释放机制,提出一种采用砷的释放指数P表征煤燃烧过程砷的释放特性的配煤模型。该模型综合考虑煤的灰分、灰中主要矿物元素含量、各矿物元素对砷的固定系数以及煤中砷含量等因素。研究结果表明,随着煤灰固定系数由23.12增至50.90,煤灰的气相砷吸附量由3.39 mg/g增至6.14 mg/g;随着释放指数P增大,砷的固定率减小,且随着温度升高,两者相关性由900℃的0.67增至1 300℃的0.86。根据P值筛选煤种进行掺烧,当掺混煤种P值差异较大时,掺烧低P值煤种不仅可降低混煤中的砷含量,还能促进高P值煤的砷在灰中富集,促进率达77.14%;掺混煤种P值差异较小时,掺烧低P值煤种会促进砷的释放。本模型可较好地筛选煤种,为混煤掺烧控制砷等痕量元素的排放提供了新的思路。  相似文献   

11.
某厂一快装锅炉,型号为KZL416,经过2年的运行,出现煤燃烧不尽,灰渣中含碳量较高,出力不足的问题。分析原因为:1锅炉前拱部分塌落,导致不能将热量有效地反射给炉排上的煤,使煤不能及时预热燃烧,即煤的着火点靠后。2燃煤品种变换频繁,实际上是改变了锅炉原来的设计工况。鉴于锅炉前拱已部分脱落,采取如下措施对锅炉进行改造。针对实际燃煤较设计煤种发热值偏低的情况,重新设计前拱,将煤的着火点前移。KZL4型锅炉的前拱呈抛物线状(如图1所示),抛物线状的前拱可将热量辐射给煤,使煤预热及时着火燃烧,着火点大致就在抛物线的前拱焦点位置…  相似文献   

12.
本文通过对某公司锅炉燃烧调整来系统的对燃烧调整进行分析研究提高锅炉效率,防止煤粉管堵塞为目标,根据锅炉的实际负荷和现有煤种,通过调整锅炉的一、二次风配风、制粉系统优化调整,实现锅炉燃烧系统优化运行。  相似文献   

13.
我国的火电机组中绝大部分为燃煤机组,这种趋势将持续相当长时间.为解决燃煤机组效率低、供电煤耗高、随着发电用煤质量降低而煤燃烧造成的环境污染等问题,采用高效低污染、大容量高参数的大型机组提高机组效率是最重要的措施.炉膛是蒸汽锅炉的一个重要组成部分,锅炉内部燃烧换热过程的好坏,直接关系到锅炉的生产能力和生产过程的可靠性.因此,对炉膛出口烟气温度进行推算,才能控制好锅炉燃烧,提高锅炉的技术经济性.  相似文献   

14.
煤炭燃烧释放的烟气中氮氧化物(NO_X)是大气形成酸雨、光化学烟雾、雾霾的重要污染物,目前控制燃煤NO_X释放的常规方法是燃烧后烟气脱硝。鉴于大型燃煤锅炉烟气脱硝方法还存在脱硝效率低、运行成本高、氨逃逸、颗粒物产生(生成白色烟气),以及城镇、城乡结合部、农村居民燃煤以及小型工商业、设施农业散煤燃烧无组织排放、未设置脱硝设施等不足,研发燃煤过程中NO_X控制(燃煤过程中原位还原脱硝)对实现燃煤烟气直排NO_X浓度达标排放或间接降低NO_X浓度来减轻后续烟气脱硝负荷具有重要科学和应用价值。从燃煤过程中细分的低温热解和高温燃烧两个连续阶段产生的氮化物形态,NO_X的形成与转化及影响因素,过渡金属、碱土金属、碱金属等化合物对燃煤过程中原位还原脱硝的催化作用等方面,全面综述了煤炭燃烧过程中NO_X形成与转化规律,指出煤燃烧过程中通过热解降低NO_X前驱物含量耦合燃烧原位还原NO_X成N_2两个途径来控制燃煤NO_X释放,并强调通过引入添加剂促进NO_X催化还原成N_2来达到降低燃煤NO_X释放的思路,为煤炭燃烧过程中原位热解减少NO_X前驱物和燃烧脱硝的两步协同催化作用的科学研究及技术开发,最终降低燃煤NO_X释放提供理论和技术依据。  相似文献   

15.
为研究醇基燃料锅炉炉膛设计方法,比较了醇基燃料与燃煤燃烧产生的烟气特性。结果显示,两种燃料的理论空气量和理论氮气量几乎相同,但理论水蒸气量相差很大,大幅影响炉膛传热过程;由于烟气成分变化很大,烟气黑度变化也很大。对于同一个10 t/h链条锅炉炉膛结构,燃烧醇基燃料的炉膛出口烟气温度明显低于燃煤锅炉,表明烟气特性对炉内传热过程以及下游受热面的对流传热过程影响很大。在许多参数目前还没有工业测试数据支持的情况下,醇基燃料锅炉热力计算采用燃煤锅炉热力计算方法进行,结果尚可。  相似文献   

16.
殷樾 《中国化工贸易》2013,(11):401-402
一、燃烧调节的目的和任务 锅炉燃烧工况的好坏无论是对锅炉机组或是整个发电厂运行的安全、经济都有着极大的影响。在安全方面,燃烧过程十分稳定直接关系到锅炉运行的可靠性。例如,燃烧过程不稳定将引起蒸汽参数发生波动;炉膛温度过低将影响燃料的着火和正常燃烧,容易引起水冷壁结渣或烧损设备,并可能增大过热器、再热器的热偏差,造成局部管壁超温或过热爆管事故。燃烧调节适当(燃料完全燃烧、炉膛温度场合热负荷分布均匀)则更是达到安全可靠运行的必要条件,只有锅炉运行工况稳定了,才能保持蒸汽的高参数运行。此外,锅炉燃烧工况的稳定、良好,是采用低氧燃烧的先决条件,采用低氧燃烧,对降低排烟热损失、提高锅炉热效率,减少NOx和SOx的生成都是极为有效的。在经济方面,锅炉燃烧的好坏直接影响锅炉运行的经济性,燃烧过程的经济性要求合理的风、粉配合,一、二次风配比和送、引风配合;此外,还要求保证适当高的炉膛温度。合理的风、粉配合就是要保持最佳的过剩空气系数;合理的送、引风配合就是要保证适当的炉膛负压。无论是在正常稳定工况或是在改变工况运行时,对燃烧调整得当,就可以减少锅炉各项热损失,提高锅炉效率。对于现代火力发电机组,锅炉效率每提高l%,整个机组效率将提高约0.3~0.4%,标准煤耗可下降3~4g/(kW·h)。  相似文献   

17.
金桥热电厂目前实际燃煤变化较大,与锅炉设计煤种存在一定的偏差(设计煤种低位发热量为20.06MJ/kg,实际燃煤低位发热量14MJ/kg)。根据节能降耗工作安排,为适应煤种变化,对锅炉燃烧系统与制粉系统进行全面系统的优化调整,掌握锅炉制粉系统和燃烧系统的的运行特性,对影响锅炉能耗的原因进行定量的经济分析。通过锅炉燃烧与制粉系统优化调整,充分挖掘锅炉节能降耗的潜力,确定目前实际燃用煤种的最佳运行方式,提高锅炉运行的安全及经济性。  相似文献   

18.
陆树标 《水泥》2000,(7):45-46
1 立窑煅烧用风量的计算方法1.1 标准状况下煤燃烧所需理论空气量 当已知煤的应用基组成时,标准状况下燃烧所需理论空气量计算公式为:也可用近似计算公式:式中:──标准状况下煤燃烧所需理论空气量, ──烧成用煤的低位应用基热值, kJ/kg。1.2 标准状况下煤燃烧所需实际空气量 实际生产中为了防止发生燃料不完全燃烧现象,考虑适当的过剩空气。即实际空气量: 式中:Va──标准状况下煤燃烧所需实际空气量, m3 /kg; α──空气过剩系数.1.1~1.3,机立窑可取 1.2。1.3 常温状态下煤燃烧所需实…  相似文献   

19.
研究了参数变压运行直流炉的运行氧量、SOFA风投运组合、二次风投运组合等对锅炉效率、NOX排放的影响。在机组660MW负荷及试验煤种下,燃烧优化运行控制方式。  相似文献   

20.
韩红梅 《煤化工》2020,48(1):1-4,14
分析了我国煤化工主要生产路线的碳流向和碳利用情况,计算了煤化工生产过程的碳排放。通过分析计算可知,原煤中碳的1/5~1/3进入产品;按转化单位煤炭计,煤化工碳排放强度2.1 t/tce^2.5 t/tce,比燃煤发电低19%~32%;按生产单位热值能源产品计,煤制油气路线碳排放强度比燃煤发电有所降低;煤制燃料和肥料在使用时将碳释放,不再具有留碳功能;煤制化学品的碳可以多次利用,具有更强的留碳能力。以煤制化学品计,2018年我国煤化工行业节碳能力约1.15亿t,实际节碳量约9700万t。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号