首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 504 毫秒
1.
采用绿色生物可降解马铃薯淀粉(S)和壳聚糖(C)复合基底取代传统的塑料基底来制备透明导电薄膜。采用多元醇法制备银纳米线(AgNWs)用作导电材料,将AgNWs制备成导电网络溶液通过喷涂法将稀释后的溶液喷到传统的聚对苯二甲酸乙二酯(PET)基底上,之后利用“反面胶印法”将AgNWs导电网络从PET基底上转移至SC基底上。结果表明:当S、C的比例为1.5时,该薄膜有着良好的光电性能(透光度<85%,面电阻<20Ω/块),较低的粗糙度(粗糙度为5.62 nm),优异的柔性(经过1 000次弯折实验后,薄膜的面电阻几乎保持稳定)和较好的界面黏附力(薄膜的黏附因子均>0.9)。所得复合薄膜在光电子器件的领域中具有良好的应用潜能。  相似文献   

2.
纳米银线(AgNWs)具有良好的透光性、导电性和稳定性,因此可作为替代材料来制备透明柔性导电薄膜。目前,透明柔性导电薄膜主要通过迈耶棒涂布法、喷涂法、印刷法、旋涂法以及抽滤转印法等方法进行制备。本文主要介绍这五种制备方法的原理及研究进展,简单分析了目前制备过程中仍存在的一些问题,并对其未来的发展方向与应用前景进行了展望。  相似文献   

3.
通过掺杂改性,在玻璃和柔性塑料衬底上采用旋涂法制备了高导电性和高透明性的PEDOT:PSS薄膜。然后以此为基础,研究了PEDOT:PSS为阳极的绿光OLED标准器件和黄光电致磷光器件性能。以CBP掺杂磷光材料(MPPZ)2Ir(acac)为发光层制备了柔性和平面OLED器件,考察了以ITO、PEDOT:PSS/玻璃、PEDOT:PSS/PET三种不同阳极器件的性能。实验结果表明,以PEDOT:PSS/玻璃阳极的器件启动电压为3.83 V,最大亮度可达18 632 cd/m2,最大电流效率可达21.61 cd/A,显示了PEDOT:PSS透明导电薄膜作为OLED阳极材料具有很大的发展潜力。  相似文献   

4.
柔性透明导电薄膜拥有优秀的光学及电学性能,目前应用最广泛的即ITO透明导电薄膜,但由于其缺点显著,限制了未来的发展,使得发展新一代透明导电薄膜成为了当今透明导电领域发展的主流。以聚对苯二甲酸乙二酯(PET)为柔性基底,采用了L-B提拉膜法和喷涂法,分部进行了还原氧化石墨烯(r GO)和银纳米线(Ag NW)复合薄膜的制备,研究了不同制备条件对复合薄膜透明度和导电性能的变化的影响。由于还原氧化石墨烯和银纳米线优秀的导电性以及透光性能,使得其在今后的柔性显示设备的应用中展现出了巨大的应用前景。  相似文献   

5.
以自制银纳米线分散液为原料,聚氨酯(PU)为可剥落树脂,在聚对苯二甲酸乙二醇酯(PET)衬底上,利用转印法制备了可用于薄膜太阳能电池的银纳米线–可剥离树脂复合透明导电薄膜,并采用四探针测试仪、紫外–可见光光度计等技术测试了其方块电阻、可见光波段透过率和雾度,分析了分散液浓度、热处理温度与时间对银纳米线透明导电薄膜光电性能的影响。结果表明:随着分散液浓度的降低,银纳米线透明导电薄膜的透过率提高,但同时方块电阻增大;热处理可显著改善透明导电薄膜的导电性,透明导电薄膜的方块电阻随着热处理温度增加、时间延长均呈现出先降低后升高的现象,透过率则随热处理温度增加而提高;在150℃热处理5 min后,银纳米线透明导电薄膜的方块电阻为42?/sq,透过率为85.7%,雾度13.52%。  相似文献   

6.
以柔性疏水小分子N-异丙基丙烯酰胺(NIPAM)对聚苯乙烯磺酸盐(PSS)进行共聚改性,制备了一系列聚[(苯乙烯磺酸盐)-共-异丙基丙烯酰胺][P(SS-co-NIPAM)],并以其为模板采用氧化聚合法与3,4-乙烯二氧噻吩(EDOT)制备了导电聚合物PEDOT:P(SS-co-NIPAM)。与PEDOT:PSS薄膜相比,NIPAM摩尔分数(以对苯乙烯磺酸钠物质的量为基准,下同)为15%时,PEDOT:P(SS-co-NIPAM)薄膜平均透光率保持在80%左右,水接触角从18.5°增至39.0°,疏水性提高,并且弯曲1000次后方阻变化量为5.71 kΩ/sq,远小于PEDOT:PSS薄膜(10.60 kΩ/sq)。以NIPAM摩尔分数为15%的PEDOT:P(SS-co-NIPAM)薄膜作为离子储存层的电致变色器件的光学对比度(ΔT)为9.83%,循环800次后ΔT仍达到9.55%,衰减量为0.28%,衰减量与PEDOT:PSS器件相当,说明NIPAM共聚改性能改善PEDOT:PSS导电聚合物的柔韧性和疏水性,以其作为离子储存层的器件可维持优异的电致变色性能。  相似文献   

7.
利用磁控溅射和旋涂法在普通硼硅玻璃上制备了AZO/AgNWs/AZO复合透明导电薄膜。利用XRD对AZO/AgNWs/AZO的结晶性进行测定,发现复合薄膜结晶质量良好;通过SEM观察到AgNWs网络均匀地分布在AZO层之间,形成透明的导电薄膜。运用紫外分光光度计、四探针测试仪等仪器对薄膜的透过率和方阻进行了系统的研究。结果发现,随着旋涂次数的增加,样品的透过率和方阻均呈下降趋势,中间层AgNWs旋涂3层时,薄膜质量因子最高,达到8.3×10~(-3)Ω~(-1),透过率为77.154%,方阻仅8.9Ω/sq.,此外,在电流的耐受性测试中,复合薄膜表现出比纯AgNWs薄膜更好的电流耐受性;在环境稳定性测试中,复合薄膜在空气中放置15天后,方阻仅增长了0.13倍,而纯AgNWs薄膜增长了5.2倍。  相似文献   

8.
柔性透明导电氧化物薄膜以其可挠曲、柔性好、质量轻等优点在柔性薄膜太阳能电池、有机发光二极管及汽车隔热膜等领域具有较好的应用前景。综述了透明导电氧化物(TCO)薄膜的种类、目前柔性透明导电氧化物薄膜的制备技术及优缺点,对柔性TCO薄膜在各个领域的应用和未来研究方向进行了展望:柔性透明导电氧化物兼具柔性、透明性和导电性,因柔性衬底大多不耐高温,应选择合适的衬底材料和制备方法,开发成本低、绿色环保、资源丰富、高性能的柔性TCO薄膜对提高光电子产业竞争力具有重要作用。  相似文献   

9.
采用化学浴沉积法,以硫酸铜和硫代乙酰胺为前体、乙二胺四乙酸二钠(EDTA-2Na)为铜离子络合剂,控制Cu和S元素的摩尔比为1∶2,在80℃下反应4h,于柔性衬底聚对苯二甲酸乙二醇酯(PET)上成功制备了Cu S透明导电薄膜。利用紫外可见分光光度计(UV-Vis)、X射线衍射仪(XRD)、场发射扫描电子显微镜(FESEM/EDS)、四探针测试仪以及薄膜导电性弯曲测试装置对Cu S透明导电薄膜进行了表征研究。结果表明,制备的导电薄膜由均匀致密六方型的Cu S纳米片组成,具有良好的导电性和透光率,且可根据不同的应用要求,通过改变反应条件方便地进行调控。Cu S透明导电薄膜的最低方块电阻值仅为20?/。经过250次大尺度弯曲实验,Cu S透明导电薄膜依然保持理想的导电能力。  相似文献   

10.
采用喷涂的方法将以十二烷基苯磺酸钠为分散剂分散在去离子水中的单壁碳纳米管喷涂到聚对苯二甲酸乙二酯基底上制备了柔性透明导电薄膜,研究了薄膜透光率与面电阻的关系、表面形貌及其弯曲状态的面电阻,结果表明这种透明导电薄膜具有高柔韧性、高透光度和低面电阻等优点,在柔性显示器、触摸屏、有机发光器件等方面有广阔的应用前景。  相似文献   

11.
采用化学聚合方法制备透明质酸(HA)掺杂的聚3,4-乙撑二氧噻吩(PEDOT)导电材料,通过正交实验优化反应条件(掺杂剂、氧化剂、反应时间)提高其电导率,将其与聚左乳酸(PLLA)结合,制得一种导电性良好且可生物降解的PEDOT/PLLA复合材料,考察了PC12细胞在PEDOT/PLLA膜上的粘附生长等生物相容性指标。四探针电导率仪检测表明,当HA为0.05 g,过硫酸铵(APS)为0.015 mol,反应时间为24 h,制备的PEDOT电导率可达0.36 S?cm-1;通过傅里叶变换红外光谱(FT-IR)、能谱(EDS)分析掺杂所得PEDOT纳米材料成分,以及扫描电镜(SEM)观察PEDOT颗粒和PEDOT/PLLA复合薄膜的表面形态,表明HA已成功掺杂到PEDOT,且制得的PEDOT/PLLA复合薄膜中PEDOT分散性较好;荧光显微镜、金相显微镜观察及CCK-8分析表明,PEDOT颗粒有利于PC12细胞的粘附及突触伸长,且在包被层粘连蛋白(LN)的PEDOT/PLLA膜(质量浓度为30%(wt))培养72 h后,细胞存活率增加至对照的(116.6±3.2)%。以上结果初步表明,PEDOT/PLLA膜具有较好的生物相容性,且利于PC12细胞突触的伸长,这为进一步神经组织工程导电生物支架的研究制备提供了实验支持。  相似文献   

12.
以3,4-乙烯二氧噻吩(EDOT)为原料,聚对苯乙烯磺酸钠(PSS-Na)为分散剂和掺杂剂,通过化学氧化合成法在水体系中聚合制备了聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸(PEDOT:PSS)悬浮液,通过真空抽滤的方法制备了PEDOT:PSS自支撑柔性导电薄膜。通过FTIR、UV-Vis对聚合产物结构进行了表征与确认,通过四探针电导率测试、SEM、拉伸断裂强度测试对PEDOT:PSS薄膜的导电性、微观形貌与力学性能进行了表征。结果表明,成功制备了PEDOT:PSS目标产物,在氧化剂与单体物质的量之比为0.875时达到最佳电导率(19.19 S/cm)。自支撑薄膜厚度约18 μm,在25 ℃,40%~60%相对湿度范围内拉伸断裂强度达到45~60 MPa,具有良好的导电性与机械性能。  相似文献   

13.
由于AgNWs具有优异的导电性,透光性以及柔韧性所以在替代成本高昂和资源较少的ITO薄膜上具有广阔前景.然而,由于涂布在透明基片上的AgNWs呈现不均匀分布以及在退火处理的过程中会出现咖啡环效应,使得薄膜的方块电阻不均匀;另外,由于电学性能的不均匀,会引起电迁移和电致焦耳热不均匀,造成透明导电薄膜局部银纳米线的熔断.为...  相似文献   

14.
以3,4-乙烯二氧噻吩(EDOT)为原料,聚对苯乙烯磺酸钠(PSS-Na)为分散剂和掺杂剂,通过化学氧化合成法在水体系中聚合制备了聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸(PEDOT:PSS)悬浮液,通过真空抽滤法制备了PEDOT:PSS自支撑柔性导电薄膜。通过FTIR、UV-Vis对聚合产物结构进行了表征与确证,通过四探针电导率测试、SEM、拉伸断裂强度测试对PEDOT:PSS薄膜的导电性、微观形貌与力学性能进行了表征。结果表明,成功制备了PEDOT:PSS目标产物,在氧化剂过硫酸铵与单体EDOT物质的量比为0.875时达到最佳电导率(19.19 S/cm)。自支撑薄膜厚度约18μm,在25℃,40%~60%相对湿度范围内拉伸强度达到45~60MPa,具有良好的导电性与机械性能。  相似文献   

15.
《塑料科技》2020,48(4)
正银纳米线透明导电薄膜兼具优异的导电性、可见光透过性和柔韧性,已经成为传统透明导电薄膜材料氧化铟锡(ITO)的有力竞争者,有望在柔性电子器件中逐渐替代ITO材料。然而,目前限制银纳米线透明导电薄膜实际应用的瓶颈问题不是其导电性差和可见光透过率低,而是方块电阻的均匀性差和雾度大,而解决这两个问题的关键在于能否得到性能优异、稳定的涂布液。  相似文献   

16.
以甲基丙烯酸缩水甘油酯(GMA)接枝对苯乙烯磺酸钠(SS)与丙烯酸(AA)共聚物合成制备光敏性掺杂剂G-PSA,并以G-PSA为水性分散剂和电荷平衡掺杂剂制备PEDOT(聚3,4-乙撑二氧噻吩)/G-PSA,采用多羟基醇二次掺杂增强其导电性,并对其进行一系列表征分析。将其与水性丙烯酸乳液共混制备导电涂料。研究发现,对比商品级水性掺杂剂聚对苯乙烯磺酸钠(PSS),PEDOT/G-PSA薄膜经UV固化后形成交联网状结构,其耐水性和环境稳定性有较大的提高,同时也具有较高的电导率;由其制备的抗静电涂料具有良好的透明性、附着力与电导率。  相似文献   

17.
采用多巴胺(DA)对聚氨酯(PU)薄膜表面进行预处理改性后,在其上喷涂银纳米线的方法成功制备了DA/Ag/PU导电复合薄膜。通过扫描电子显微镜和X射线衍射仪对DA/Ag/PU导电复合薄膜的微观结构进行了表征,同时还对其在拉伸、弯曲形变条件下的电学性能进行了研究。结果表明:所制DA/Ag/PU导电复合薄膜,经1 000次往复拉伸后(拉伸形变20%)电阻仅提高5%,经1 000次往复弯曲后(弯曲形变30%~130%)电阻值未明显提高。显然,经DA预处理后,PU基体对银纳米粒子的吸附能力提高,改善了导电复合薄膜的导电通路,使其导电性能显著提高。  相似文献   

18.
通过无皂乳液聚合,制备了以聚丙烯酸丁酯(PBA)为核,聚乙烯基苯磺酸钠(PSSNa)为壳的核壳型聚乙烯基苯磺酸钠/聚丙烯酸丁酯(PSSNa/PBA),并以此为模板制备了核壳型聚3,4-二氧乙烯噻吩(PEDOT)水分散体,研究了核壳型模板对PEDOT水分散体结构和性能的影响。结果显示:通过透射电镜(TEM)表征,证明成功制备了核壳型模板PSSNa/PBA和具有核壳结构的聚3,4-二氧乙烯噻吩:聚乙烯基苯磺酸钠/聚丙烯酸丁酯(PEDOT:PSSNa/PBA)水分散体。聚合动力学研究表明,以核壳型PSSNa/PBA为模板时,EDOT的聚合速率加快。表面方块电阻测试表明,较PEDOT:PSSNa薄膜,PEDOT:PSSNa/PBA薄膜的方块电阻降低近16倍,说明核壳结构的模板可改善PEDOT薄膜的导电性。  相似文献   

19.
采用软模板法,在水相胶束中合成石墨烯/聚(3,4-乙烯二氧噻吩)纳米线(PEDOT NWs)复合材料,通过真空抽滤自组装法制备了石墨烯/PEDOT NWs柔性复合薄膜。经过一系列表征和测试表明,石墨烯的加入明显提高了石墨烯/PEDOT NWs复合膜的热电性能,当石墨烯的含量为10%时热电性能达到最佳,其功率因数为12.90μW/mK~2,比纯PEDOT NWs的提高了291%。  相似文献   

20.
采用原位共沉淀法在高性能细菌纤维素(BC)表面负载磁性四氧化三铁(Fe3O4)纳米粒子得到BC@Fe3O4,进而采用两步真空辅助抽滤法制得具有磁性导电层级结构的BC@Fe3O4/AgNWs复合薄膜。通过扫描电镜(SEM)、透射电镜(TEM)、傅里叶红外光谱(FTIR)、X射线衍射(XRD)和矢量网络分析仪等对纳米材料和复合薄膜的微观结构与性能进行分析。结果表明:当AgNWs面积含量为1.8 g/m2时,复合薄膜的电磁屏蔽效能(EMI SE)可达56 dB。AgNWs与BC@Fe3O4基体之间具有良好的界面相互作用,使BC@ Fe3O4/AgNWs复合薄膜具有优异的力学性能,拉伸强度和断裂伸长率最高达到84.6 MPa和4.05%。所得柔性、高强且高电磁屏蔽效能细菌纤维素基电磁屏蔽复合薄膜在柔性可穿戴电子设备等领域具有良好的应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号