首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A crack in a thin adhesive elastic-perfectly plastic layer between two identical isotropic elastic half-spaces is considered. Uniformly distributed normal stress is applied to the substrates at infinity. First, stress distribution in the cohesive zones and the J-integral values are defined numerically by the finite element method (FEM). Further, a mathematical formulation of the problem is given and its analytical solution is proposed. It is assumed that, at the crack continuations, there exist cohesive zones. The interlayer thickness is neglected since it is much smaller than the crack length. The distribution of the normal stress, which was obtained by means of the FEM, is now approximated by a piecewise-constant function and assumed to be applied at the faces of the cohesive zones. The formulated problem is solved analytically and an equation for determination of the cohesive zone lengths is derived. Also, closed expressions for the crack tip opening displacement and for the J-integral are obtained in an analytical form. These parameters are found with respect to the values of the normal stress applied at infinity. Finally, a universal approximating function, which describes the stress distribution in the cohesive zones, is constructed. This function depends on the ratio between the interlayer thickness and the crack length and on the ratio between the normal stress applied at infinity and the yield limit of the interlayer’s material. Once again, the problem is solved analytically, but this time for the stress distribution prescribed by the universal approximating function. The cohesive zone lengths, the values of the crack tip opening displacement and of the J-integral are calculated. A comparative analysis of the obtained results is carried out. A good agreement of the J-integral values calculated by means of the developed analytical models and by the associated finite element analysis is demonstrated.  相似文献   

2.
The present work is aimed at studying the fracture behavior of a series of vulcanized natural rubber/organoclay samples obtained by melt blending. A fracture mechanics approach based on J-testing was adopted to evaluate the material resistance to crack initiation and propagation from a J-resistance curve as experimentally obtained by a single specimen procedure. The basis of the method and the experimental procedure adopted are described. Further, the effect of the organoclay content within the elastomeric matrix on the fracture properties is analyzed. It is found that the capability of the organoclay to improve fracture resistance is rate dependent indicating the viscoelastic character of the fracture process in such filled systems.  相似文献   

3.
Fracture mechanics tests are traditionally designed to measure material resistance to stable or unstable crack extension using specimens that are highly constrained to plastic deformation. For a variety of reasons, structural members may be made of thin gage-materials with inherently low constraint to plastic deformation. There is currently little guidance for measuring crack extension resistance under such conditions. The international standards organisations ISO and ASTM are responding to that need, and this paper describes one aspect of their current activity.Two procedures are being developed; one based on the δ5 crack opening displacement parameter, the other on the constant value of the crack tip opening angle, ψc. The measurement of δ5 is well established and relatively simple, whereas ψc is more difficult to determine experimentally. Evaluations of ψc from finite-element analyses are currently the most accurate approach, since measurements can only be made on the exterior surfaces similar to δ5. Questions naturally arise regarding the correspondence of surface indication with full-thickness response in the laboratory experience. Both measures of crack extension resistance are suitable for structural assessment. The δ5 concept is applied by means of crack driving force formulae from existing assessment procedures and hence relatively easy to use. On the other hand, the CTOA concept is potentially more accurate and can be applied to cases of multiple cracks and complex structures. But its structural application requires numerical methods, which have been successful in predicting the failure of large-scale cracked structural components.  相似文献   

4.
It is well known that conventional GE/EPRI method over-estimates the J-integral and crack opening displacement (COD)1 in the elastic to fully plastic transition zone. The present paper investigates this issue and attempts to rectify this error. An improved GE/EPRI method is proposed with the modifications of α (Ramberg-Osgood coefficient) term in the equation of plastic J and COD. The proposed method has been experimentally and numerically validated.  相似文献   

5.
This paper proposes an engineering method to estimate the J-integral and the crack opening displacement (COD) for circumferential through-wall cracked pipes under combined tension and bending. The proposed method to estimate the COD is validated against three published pipe test data, generated from a monotonically increasing bending load with a constant internal pressure, which shows excellent agreements. Further validation is performed against three-dimensional, elastic-plastic finite element results using actual tensile data of a TP316 stainless steel at the temperature of 288°C. The FE results of the J-integral and the COD, resulting from six cases of proportional and non-proportional combined tension and bending, compare very well with those estimated from the proposed method.Excellent agreements of the proposed method with experimental data and the detailed FE results firstly provide sufficient confidence in the use of the proposed method to the LBB analysis of through-wall cracked pipes under combined tension and bending. More importantly, these validations suggest that the proposed method can be used to any combination of the bending-to-tension ratio, not only for proportional loading but also for non-proportional loading. Finally the proposed method is simple to use, which gives significant merits in practice, and thus is easy to be generalised to more complex situations.  相似文献   

6.
Leak-before-break (LBB) assessment of primary heat transport piping of nuclear reactors involves detailed fracture assessment of pipes and elbows with postulated throughwall cracks. Fracture assessment requires the calculation of elastic-plastic J-integral and crack opening displacement (COD)1 for these piping components. Analytical estimation schemes to evaluate elastic-plastic J-integral and COD simplify the calculations. These types of estimation schemes are available for pipes with various crack configurations subjected to different types of loading. However, no such schemes are available for throughwall circumferentially cracked elbow (or pipe bend), an important component for LBB analysis. In this paper, simple J and COD estimation schemes are proposed for throughwall circumferentially cracked elbow subjected to closing bending moment. The ovalisation of elbow cross-section has a significant bearing on its fracture behavior. Therefore, unlike conventional deformation theory plasticity analysis, incremental flow theory is adopted considering both material and geometric non-linearities in the development of the proposed estimation schemes. Although it violates Ilyushin’s theorem, it has been shown that the resulting estimation schemes is still reasonably accurate for engineering purposes. Finally, experimental/numerical validation has been provided by comparing the J-integral and COD between numerical/test data and predictions of the proposed estimation schemes.  相似文献   

7.
Finite element computations are performed to analyze the phenomena of edge cracking and crack bifurcation in two ceramic laminates composed by tensile thick layers and compressive thin layers. The difference between these two laminates is the thickness of the compressive thin layers. Experimental results performed by one of the authors in previous works show that edge cracks exist in only one laminate, while crack bifurcation occurs in both laminates under bending. To understand the cracking phenomena observed in experiments, the energy release rates are calculated. Numerical results show that the initiation of crack bifurcation can be explained by the near-tip J-integral, provided that micro-cracks exist near the crack tip.  相似文献   

8.
The present work proposes a method for elastic-plastic fracture mechanics analysis of the circumferential through-wall crack in weldment joining elbows and attached straight pipes, subject to in-plane bending. Heterogeneous nature of weldment is not explicitly considered and thus, the proposed method assumes cracks in homogeneous materials. Based on small strain finite element limit analyses using elastic-perfectly plastic materials, closed-form limit loads for circumferential through-wall cracks between elbows and straight pipes under bending are given. Then applicability of the reference stress-based method to approximately estimate J and crack opening displacement (COD) is evaluated. It was found that the limit moments for circumferential cracks between elbows and attached straight pipes can be much lower than those for cracks in straight pipes, particularly for a crack length of less than 30% of the circumference; this result is of great interest in practical cases. This result implies that, if one assumes that the crack locates in the straight pipe, limit moments could be overestimated significantly, and accordingly, reference stress-based J and COD could be significantly overestimated. For the leak-before-break analysis, accurate J and COD estimation equations based on the reference stress approach are proposed.  相似文献   

9.
V R Ranganath  S Tarafder 《Sadhana》1995,20(1):233-246
The structural integrity assessment of a weld joint by conventional techniques is inadequate, because of unavoidable defects in the weld composite. The stress situation in a component having a defect is quite different from that of a homogeneous material. The significance of fracture mechanics to deal with such integrity assessments is brought out. A brief review on the basic formulations in the application of fracture mechanics is followed by established guidelines for evaluating the integrity of engineering components containing crack-like defects.  相似文献   

10.
The present paper provides the plastic η factor solutions for J testing of single-edge-cracked specimens in four-point bend (SE(PB)), based on limit (slip line field) and detailed finite element limit analyses. Both homogeneous specimens and bi-material specimens with interface cracks are considered. Moreover, two different η factor solutions are developed, one for J (or C* in creep crack growth testing) estimation based on the load-load line displacement (LLD) records, ηpVLL, and the other J estimation based on the load-crack mouth opening displacement (CMOD) records, ηpCMOD.It is found that the use of load-LLD records can be recommended only for testing deeply cracked SE(PB) specimens. Moreover, depending on how the LLD is measured, a different value of ηpVLL should be used. On the other hand, the use of load-CMOD records is recommended for all possible crack lengths. Moreover, the proposed ηpCMOD solution can be used not only for a homogeneous specimen but also for any bi-material specimen with an interface crack.  相似文献   

11.
Recent experimental results by us have indicated that the load-drop technique can serve as a valid fracture criterion for predicting elastic-plastic fracture in extra deep drawn (EDD) steel sheets or in predominantly plane stress conditions. The purpose of this investigation is to examine the validity of aJ-integral as a fracture parameter and theJ-CTOD relation for the determination of critical CTOD in predominantly plane stress fracture (CTOD-crack tip opening displacement). Fracture tests were performed and experimental results were generated on fracture behaviour of EDD (0·06%C) steel sheets with CT specimens and using ‘load-drop’ as a fracture criterion. Critical CTOD was determined by using theJ-CTOD relation in addition to several existing techniques. A full 3-D finite element model was formulated to verify the critical load, critical CTOD and plastic-zone size. The critical CTOD was shown to increase with increasing specimen thickness and appeared to be approaching a higher limiting value. The characteristic features of predominantly plane stress fracture or general yielding fracture mechanics are summarized in conclusion  相似文献   

12.
This work provides an estimation procedure to determine the J-integral and CTOD for pipes with circumferential surface cracks subjected to bending load for a wide range of crack geometries and material (hardening) based upon fully-plastic solutions. A summary of the methodology upon which J and CTOD are derived sets the necessary framework to determine nondimensional functions h1 and h2 applicable to a wide range of crack geometries and material properties characteristic of structural, pressure vessel and pipeline steels. The extensive nonlinear, 3-D numerical analyses provide a definite full set of solutions for J and CTOD which enters directly into fitness-for-service (FFS) analyses and defect assessment procedures of cracked pipes and cylinders subjected to bending load.  相似文献   

13.
The aim of this paper is to study the effects of micro-cracking on the homogenized constitutive properties of elastic composite materials. To this end a novel micro-mechanical approach based on homogenization techniques and fracture mechanics concepts, is proposed and an original J-integral formulation is established for composite micro-structures. Accurate non-linear macroscopic constitutive laws are developed for a uniaxial and a shear macro-strain path by taking into account changes in micro-structural configuration owing to crack growth and crack face contact. Numerical results, carried out by coupling a finite element formulation and an interface model, are applied to a porous composite with edge cracks and a debonded short fiber-reinforced composite. The composite micro-structure is controlled by the macroscopic strain and the micro-to-macro transition, settled in a variational formulation, is obtained for three types of boundary conditions, i.e. linear displacements, uniform tractions and periodic fluctuations and anti-periodic tractions. The accuracy of the determined macroscopic constitutive properties to represent the failure characteristics of locally periodic defected composites is also investigated in terms of energy release rate predictions, by comparisons between a direct analysis and homogenization approaches. Results highlight the dependence of the macroscopic constitutive law for a micro-structure with evolving defects on both the macro-strain path and the type of boundary conditions and the capability of the proposed model to provide a failure model for a composite material undergoing micro-cracking and contact.  相似文献   

14.
Fiber-metal laminates (FMLs) are structural composites developed for aeronautical applications. The application of FMLs to structures demands a deep knowledge of a wide set of properties, including fracture toughness. The objective of this work was to evaluate the effect of crack orientation on the fracture toughness (critical J-integral and CTOD δ5) of unidirectional FMLs. Small C(T) and SE(B) specimens with notches parallel and perpendicular to the fibers direction were tested. A study of the relation and equivalence between JC and δ5C, which heavily depend on the yield strength and on the stress state, was performed motivated by apparently contradictory experimental results. These results can be explained by the direction-dependent yielding properties of unidirectional FMLs. The best overall equivalence between JC and δ5C was obtained considering plane stress state and using the effective yield strength, both for unidirectional FMLs notched parallel and perpendicular to the fibers direction.  相似文献   

15.
Mixed-mode fracture load prediction in lead-free solder joints   总被引:1,自引:0,他引:1  
Double cantilever beam (DCB) fracture specimens were made by joining copper bars with both continuous and discrete SAC305 solder layers of different lengths under standard surface mount (SMT) processing conditions. The specimens were then fractured under mode-I and various mixed-mode loading conditions. The loads corresponding to crack initiation in the continuous joints were used to calculate the critical strain energy release rate, Jci, at the various mode ratios using elastic–plastic finite element analysis (FEA). It was found that the Jci from the continuous joint DCBs provided a lower bound strength prediction for discrete 2 mm and 5 mm long joints at the various mode ratios. Additionally, these Jci values calculated from FEA using the measured fracture loads agreed reasonably with Jci estimated from measured crack opening displacements at crack initiation in both the continuous and discrete joints. Therefore, the critical strain energy release rate as a function of the mode ratio of loading is a promising fracture criterion that can be used to predict the strength of solder joints of arbitrary geometry subject to combined tensile and shear loads.  相似文献   

16.
Stable and unstable tearing in metals is currently analysed by J integral theory. Test and analysis methods are fully standardised and the validity of the approach has been demonstrated by reference to laboratory and type testing. A central requirement of the J method is that the JR curve remain invariant as size increases (specimen dimension to structure). A set of data from the literature which show the slope of the JR curve decreasing with increasing specimen size are presented. This represents an unsafe trend in terms of predicting structural behaviour from small specimens tests. The observed behaviour is explained successfully with energy dissipation rate theory. At the same time energy dissipation rate theory can also explain the more normally observed behaviour of size invariant JR curves. It is concluded that stable and unstable tearing in metals is best described by the energy dissipation rate approach.  相似文献   

17.
Surface crack-tip stress fields in a tensile loaded metallic liner bonded to a structural backing are developed using a two-parameter J-T characterization and elastic-plastic modified boundary layer (MBL) finite element solutions. The Ramberg-Osgood power law hardening material model with deformation plasticity theory is implemented for the metallic liner. In addition to an elastic plate backed surface crack liner model, elastic-plastic homogeneous surface crack models of various thicknesses were tested. The constraint effects that arise from the elastic backing on the thin metallic liner and the extent to which J-T two parameter solutions characterize the crack-tip fields are explored in detail. The increased elastic constraint imposed by the backing on the liner results in an enhanced range of validity of J-T characterization. The higher accuracy of MBL solutions in predicting the surface crack-tip fields in the bonded model is partially attributed to an increase in crack-tip triaxiality and a consequent increase in the effective liner thickness from a fracture standpoint. After isolating the effects of thickness, the constraint imposed by the continued elastic linearity of the backing significantly enhanced stress field characterization. In fact, J and T along with MBL solutions predicted stresses with remarkable accuracy for loads beyond full yielding. The effects of backing stiffness variation were also investigated and results indicate that the backing to liner modulus ratio does not significantly influence the crack tip constraint. Indeed, the most significant effect of the backing is its ability to impose an elastic constraint on the liner. Results from this study will facilitate the implementation of geometric limits in testing standards for surface cracked tension specimens bonded to a structural backing.  相似文献   

18.
This work deals with the fracture of rubbers under a mixed mode loading (I + II) and it is an extension of our previous papers on that subject [Aït Hocine N, Naït Abdelaziz M, Imad A (2002) Int J Fract 117:1–23; Aït Hocine N, Naït Abdelaziz M (2004) In: Sih GC, Kermanidis B, Pantelakis G (eds) 6th international conference for mesomechanics. Patras (Greece), May 31–June 4, pp 381–385]. An experimental and a numerical analysis were carried out using a Styrene Butadiene Rubber (SBR) filled with 20 and 30% of carbon black. Sheets with an initial central crack (CCT specimens) inclined with a given angle compared to the loading direction were used. The J-integral and its critical values J c (fracture surface energy) were determined by combining experimental data and finite element results. These critical values, determined at the onset of crack growth, were found to be quite constant for each elastomer tested, which suggests that J c represents a reasonable fracture criterion of such materials. Then, the strain–stress field and the strain-energy-density factor S, earlier introduced by Sih [Sih GC (1974) Int J Fract 10(3):305–321; Sih GC (1991) Mechanics of fracture initiation and propagation. Kluwer Academic Publishers, Dordrecht, 428 pp] were numerically calculated around the crack tip. According to the experimental observations, the plan of crack propagation is perpendicular to the direction of the maximum principal stretch. Moreover, as suggested by Sih in the framework of linear elastic fracture mechanics (LEFM), the minimum values S min of the factor S are reached at the points corresponding to the crack propagation direction. These results suggest that the concept of the maximum principal stretch and the one of the strain-energy-density factor can be used as indicators of the crack propagation direction.  相似文献   

19.
Crack stability is discussed as affected by their presence in statically-indeterminate beams, frames, rings, etc. loaded into the plastic range. The stability of a crack in a section, which has become plastic, is analyzed with the remainder of the structure elastic and with subsequent additional plastic hinges occurring. The reduction of energy absorption characteristics for large deformations is also discussed. The methods of elastic-plastic tearing instability are incorporated to show that in many cases the fully plastic collapse mechanism must occur for complete failure.  相似文献   

20.
A new method is proposed for shape sensitivity analysis of a crack in a homogeneous, isotropic, and nonlinearly elastic body subject to mode I loading conditions. The method involves the material derivative concept of continuum mechanics, domain integral representation of the J-integral, and direct differentiation. Unlike virtual crack extension techniques, no mesh perturbation is required in the proposed method. Since the governing variational equation is differentiated before the process of discretization, the resulting sensitivity equations are independent of any approximate numerical techniques. Based on the continuum sensitivities, the first-order reliability method was employed to perform probabilistic analysis. Numerical examples are presented to illustrate both the sensitivity and reliability analyses. The maximum difference between the sensitivity of stress-intensity factors calculated using the proposed method and the finite-difference method is less than four percent. Since all gradients are calculated analytically, the reliability analysis of cracks can be performed efficiently.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号