首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Due to the inherent existence of uncertainty in many real-world applications, in this paper, we investigate an important query in uncertain databases, namely probabilistic least influenced set (PLIS) query, which retrieves all the uncertain objects in an uncertain database such that they are the least affected by a given query object with high probabilities. Such a PLIS query is useful in applications such as business planning. We propose and tackle both monochromatic and bichromatic versions (i.e. M-PLIS and B-PLIS, respectively) of the PLIS query. In order to efficiently answer PLIS queries, we present three pruning methods, MINMAX, Regional, and Candidate pruning, which can effectively reduce the PLIS search space. The proposed pruning methods can be seamlessly integrated into efficient query procedures. Moreover, we also study important variants of PLIS query with uncertain query object (i.e. UQ-PLIS). Furthermore, we formulate and tackle the PLIS problem on uncertain moving objects (i.e. UMOD-PLIS). Extensive experiments have demonstrated the efficiency and effectiveness of our proposed approaches under various settings.  相似文献   

2.
Reverse nearest neighbor (RNN) search is very crucial in many real applications. In particular, given a database and a query object, an RNN query retrieves all the data objects in the database that have the query object as their nearest neighbors. Often, due to limitation of measurement devices, environmental disturbance, or characteristics of applications (for example, monitoring moving objects), data obtained from the real world are uncertain (imprecise). Therefore, previous approaches proposed for answering an RNN query over exact (precise) database cannot be directly applied to the uncertain scenario. In this paper, we re-define the RNN query in the context of uncertain databases, namely probabilistic reverse nearest neighbor (PRNN) query, which obtains data objects with probabilities of being RNNs greater than or equal to a user-specified threshold. Since the retrieval of a PRNN query requires accessing all the objects in the database, which is quite costly, we also propose an effective pruning method, called geometric pruning (GP), that significantly reduces the PRNN search space yet without introducing any false dismissals. Furthermore, we present an efficient PRNN query procedure that seamlessly integrates our pruning method. Extensive experiments have demonstrated the efficiency and effectiveness of our proposed GP-based PRNN query processing approach, under various experimental settings.  相似文献   

3.
Query processing in the uncertain database has played an important role in many real-world applications due to the wide existence of uncertain data. Although many previous techniques can correctly handle precise data, they are not directly applicable to the uncertain scenario. In this article, we investigate and propose a novel query, namely probabilistic top-k star (PTkS) query, which aims to retrieve k objects in an uncertain database that are “closest” to a static/dynamic query point, considering both distance and probability aspects. In order to efficiently answer PTkS queries with a static/moving query point, we propose effective pruning methods to reduce the PTkS search space, which can be seamlessly integrated into an efficient query procedure. Finally, extensive experiments have demonstrated the efficiency and effectiveness of our proposed PTkS approaches on both real and synthetic data sets, under various parameter settings.  相似文献   

4.
Recently, many new applications, such as sensor data monitoring and mobile device tracking, raise up the issue of uncertain data management. Compared to "certain” data, the data in the uncertain database are not exact points, which, instead, often reside within a region. In this paper, we study the ranked queries over uncertain data. In fact, ranked queries have been studied extensively in traditional database literature due to their popularity in many applications, such as decision making, recommendation raising, and data mining tasks. Many proposals have been made in order to improve the efficiency in answering ranked queries. However, the existing approaches are all based on the assumption that the underlying data are exact (or certain). Due to the intrinsic differences between uncertain and certain data, these methods are designed only for ranked queries in certain databases and cannot be applied to uncertain case directly. Motivated by this, we propose novel solutions to speed up the probabilistic ranked query (PRank) with monotonic preference functions over the uncertain database. Specifically, we introduce two effective pruning methods, spatial and probabilistic pruning, to help reduce the PRank search space. A special case of PRank with linear preference functions is also studied. Then, we seamlessly integrate these pruning heuristics into the PRank query procedure. Furthermore, we propose and tackle the PRank query processing over the join of two distinct uncertain databases. Extensive experiments have demonstrated the efficiency and effectiveness of our proposed approaches in answering PRank queries, in terms of both wall clock time and the number of candidates to be refined.  相似文献   

5.
Due to the pervasive data uncertainty in many real applications, efficient and effective query answering on uncertain data has recently gained much attention from the database community. In this paper, we propose a novel and important query in the context of uncertain databases, namely probabilistic group subspace skyline (PGSS) query, which is useful in applications like sensor data analysis. Specifically, a PGSS query retrieves those uncertain objects that are, with high confidence, not dynamically dominated by other objects, with respect to a group of query points in ad-hoc subspaces. In order to enable fast PGSS query answering, we propose effective pruning methods to reduce the PGSS search space, which are seamlessly integrated into an efficient PGSS query procedure. Furthermore, to achieve low query cost, we provide a cost model, in light of which uncertain data are pre-processed and indexed. Extensive experiments have been conducted to demonstrate the efficiency and effectiveness of our proposed approaches.  相似文献   

6.
Range and nearest neighbor queries are the most common types of spatial queries, which have been investigated extensively in the last decades due to its broad range of applications. In this paper, we study this problem in the context of fuzzy objects that have indeterministic boundaries. Fuzzy objects play an important role in many areas, such as biomedical image databases and GIS communities. Existing research on fuzzy objects mainly focuses on modeling basic fuzzy object types and operations, leaving the processing of more advanced queries largely untouched. In this paper, we propose two new kinds of spatial queries for fuzzy objects, namely single threshold query and continuous threshold query, to determine the query results which qualify at a certain probability threshold and within a probability interval, respectively. For efficient single threshold query processing, we optimize the classical R-tree-based search algorithm by deriving more accurate approximations for the distance function between fuzzy objects and the query object. To enhance the performance of continuous threshold queries, effective pruning rules are developed to reduce the search space and speed up the candidate refinement process. The efficiency of our proposed algorithms as well as the optimization techniques is verified with an extensive set of experiments using both synthetic and real datasets.  相似文献   

7.
组最近邻查询是空间对象查询领域的一类重要查询,通过该查询可找到距离给定查询点集最近的空间对象.由于图像分辨率或解析度的限制等因素,空间对象的存在不确定性广泛存在于某些涉及图像处理的查询应用中.这些对象位置数据的存在不确定性会对组最近邻查询结果产生影响.本文给出面向存在不确定对象的概率阈值组最近邻查询定义,设计了高效的查询处理机制,通过剪枝优化等手段提高概率阈值组最近邻查询效率,并进一步提出了高效概率阈值组最近邻查询算法.采用多个真实数据集对概率阈值组最近邻算法进行了实验验证,结果表明所提算法具有良好的查询效率.  相似文献   

8.
Skyline query is of great importance in many applications, such as multi-criteria decision making and business planning. In particular, a skyline point is a data object in the database whose attribute vector is not dominated by that of any other objects. Previous methods to retrieve skyline points usually assume static data objects in the database (i.e. their attribute vectors are fixed), whereas several recent work focus on skyline queries with dynamic attributes. In this paper, we propose a novel variant of skyline queries, namely metric skyline, whose dynamic attributes are defined in the metric space (i.e. not limited to the Euclidean space). We illustrate an efficient and effective pruning mechanism to answer metric skyline queries through a metric index. Most importantly, we formalize the query performance of the metric skyline query in terms of the pruning power, by a cost model, in light of which we construct an optimized metric index aiming to maximize the pruning power of metric skyline queries. Extensive experiments have demonstrated the efficiency and effectiveness of our proposed pruning techniques as well as the constructed index in answering metric skyline queries.  相似文献   

9.
Distance-based range search is crucial in many real applications. In particular, given a database and a query issuer, a distance-based range search retrieves all the objects in the database whose distances from the query issuer are less than or equal to a given threshold. Often, due to the accuracy of positioning devices, updating protocols or characteristics of applications (for example, location privacy protection), data obtained from real world are imprecise or uncertain. Therefore, existing approaches over exact databases cannot be directly applied to the uncertain scenario. In this paper, we redefine the distance-based range query in the context of uncertain databases, namely the probabilistic uncertain distance-based range (PUDR) queries, which obtain objects with confidence guarantees. We categorize the topological relationships between uncertain objects and uncertain search ranges into six cases and present the probability evaluation in each case. It is verified by experiments that our approach outperform Monte-Carlo method utilized in most existing work in precision and time cost for uniform uncertainty distribution. This approach approximates the probabilities of objects following other practical uncertainty distribution, such as Gaussian distribution with acceptable errors. Since the retrieval of a PUDR query requires accessing all the objects in the databases, which is quite costly, we propose spatial pruning and probabilistic pruning techniques to reduce the search space. Two metrics, false positive rate and false negative rate are introduced to measure the qualities of query results. An extensive empirical study has been conducted to demonstrate the efficiency and effectiveness of our proposed algorithms under various experimental settings.  相似文献   

10.
Most recently, uncertain graph data begin attracting significant interests of database research community, because uncertainty is the intrinsic property of the real-world and data are more suitable to be modeled as graphs in numbers of applications, e.g. social network analysis, PPI networks in biology, and road network monitoring. Meanwhile, as one of the basic query operators, aggregate nearest neighbor (ANN) query retrieves a data entity whose aggregate distance, e.g. sum, max, to the given query data entities is smaller than those of other data entities in a database. ANN query on both certain graph data and high dimensional data has been well studied by previous work. However, existing ANN query processing approaches cannot handle the situation of uncertain graphs, because topological structures of an uncertain graph may vary in different possible worlds. Motivated by this, we propose the aggregate nearest neighbor query in uncertain graphs (UG-ANN) in this paper. First of all, we give the formal definition of UG-ANN query and the basic UG-ANN query algorithm. After that, to improve the efficiency of UG-ANN query processing, we develop two kinds of pruning approaches, i.e. structural pruning and instance pruning. The structural pruning takes advantages the monotonicity of the aggregate distance to derive the upper and lower bounds of the aggregate distance for reducing the graph size. Whereas, the instance pruning decreases the number of possible worlds to be checked in the searching tree. Comprehensive experimental results on real-world data sets demonstrate that the proposed method significantly improves the efficiency of the UG-ANN query processing.  相似文献   

11.
基于不确定数据的查询处理综述   总被引:5,自引:0,他引:5  
崔斌  卢阳 《计算机应用》2008,28(11):2729-2731
不确定数据在一些重要应用领域中是固有存在的,如传感器网络和移动物体追踪。在不确定数据上使用传统的查询方法会使查询结果出现偏差,不能满足用户的需求。因此,基于不确定数据的查询处理受到了越来越多的关注。与在确定数据上查询不同,不确定数据上的研究工作将概率引入到数据模型中来衡量不确定对象成为结果集中元素的可能性。由于问题定义和数据模型的不同,不确定数据上的查询类型也多种多样。从问题定义、数据模型、剪枝策略和算法等角度,对基于不确定数据的范围查询、top-k查询以及skyline查询进行了介绍。  相似文献   

12.
A nearest neighbor (NN) query, which returns the most similar object to a user-specified query object, plays an important role in a wide range of applications and hence has received considerable attention. In many such applications, e.g., sensor data collection and location-based services, objects are inherently uncertain. Furthermore, due to the ever increasing generation of massive datasets, the importance of distributed databases, which deal with such data objects, has been growing. One emerging challenge is to efficiently process probabilistic NN queries over distributed uncertain databases. The straightforward approach, that each local site forwards its own database to the central server, is communication-expensive, so we have to minimize communication cost for the NN object retrieval. In this paper, we focus on two important queries, namely top-k probable NN queries and probabilistic star queries, and propose efficient algorithms to process them over distributed uncertain databases. Extensive experiments on both real and synthetic data have demonstrated that our algorithms significantly reduce communication cost.  相似文献   

13.
An all-k-nearest-neighbor (AkNN) query finds k nearest neighbors for each query object. This problem arises naturally in many areas, such as GIS (geographic information system), multimedia retrieval, and recommender systems. To support various data types and flexible distance metrics involved in real applications, we study AkNN retrieval in metric spaces, namely, metric AkNN (MAkNN) search. Consider that the underlying indexes on the query set and the object set may not exist, which is natural in many scenarios. For example, the query set and the object set could be the results of other queries, and thus, the underlying indexes cannot be built in advance. To support MAkNN search on datasets without any underlying index, we propose an efficient disk-based algorithm, termed as Partition-Based MAkNN Algorithm (PMA), which follows a partition-search framework and employs a series of pruning rules for accelerating the search. In addition, we extend our techniques to tackle an interesting variant of MAkNN queries, i.e., metric self-AkNN (MSAkNN) search, where the query set is identical to the object set. Extensive experiments using both real and synthetic datasets demonstrate the effectiveness of our pruning rules and the efficiency of the proposed algorithms, compared with state-of-the-art MAkNN and MSAkNN algorithms.  相似文献   

14.
Efficient fuzzy ranking queries in uncertain databases   总被引:1,自引:1,他引:0  
Recently, uncertain data have received dramatic attention along with technical advances on geographical tracking, sensor network and RFID etc. Also, ranking queries over uncertain data has become a research focus of uncertain data management. With dramatically growing applications of fuzzy set theory, lots of queries involving fuzzy conditions appear nowadays. These fuzzy conditions are widely applied for querying over uncertain data. For instance, in the weather monitoring system, weather data are inherent uncertainty due to some measurement errors. Weather data depicting heavy rain are desired, where ??heavy?? is ambiguous in the fuzzy query. However, fuzzy queries cannot ensure returning expected results from uncertain databases. In this paper, we study a novel kind of ranking queries, Fuzzy Ranking queries (FRanking queries) which extend the traditional notion of ranking queries. FRanking queries are able to handle fuzzy queries submitted by users and return k results which are the most likely to satisfy fuzzy queries in uncertain databases. Due to fuzzy query conditions, the ranks of tuples cannot be evaluated by existing ranking functions. We propose Fuzzy Ranking Function to calculate tuples?? ranks in uncertain databases for both attribute-level and tuple-level uncertainty models. Our ranking function take both the uncertainty and fuzzy semantics into account. FRanking queries are formally defined based on Fuzzy Ranking Function. In the processing of answering FRanking queries, we present a pruning method which safely prunes unnecessary tuples to reduce the search space. To further improve the efficiency, we design an efficient algorithm, namely Incremental Membership Algorithm (IMA) which efficiently answers FRanking queries by evaluating the ranks of incremental tuples under each threshold for the fuzzy set. We demonstrate the effectiveness and efficiency of our methods through the theoretical analysis and experiments with synthetic and real datasets.  相似文献   

15.
The Group Nearest Neighbor (GNN) search is an important approach for expert and intelligent systems, i.e., Geographic Information System (GIS) and Decision Support System (DSS). However, traditional GNN search starts from users’ perspective and selects the locations or objects that users like. Such applications fail to help the managers since they do not provide managerial insights. In this paper, we focus on solving the problem from the managers’ perspective. In particular, we propose a novel GNN query, namely, the reverse top-k group nearest neighbor (RkGNN) query which returns k groups of data objects so that each group has the query object q as their group nearest neighbor (GNN). This query is an important tool for decision support, e.g., location-based service, product data analysis, trip planning, and disaster management because it provides data analysts an intuitive way for finding significant groups of data objects with respect to q. Despite their importance, this kind of queries has not received adequate attention from the research community and it is a challenging task to efficiently answer the RkGNN queries. To this end, we first formalize the reverse top-k group nearest neighbor query in both monochromatic and bichromatic cases, and then propose effective pruning methods, i.e., sorting and threshold pruning, MBR property pruning, and window pruning, to reduce the search space during the RkGNN query processing. Furthermore, we improve the performance by employing the reuse heap technique. As an extension to the RkGNN query, we also study an interesting variant of the RkGNN query, namely a constrained reverse top-k group nearest neighbor (CRkGN) query. Extensive experiments using synthetic and real datasets demonstrate the efficiency and effectiveness of our approaches.  相似文献   

16.
In this paper, we propose an efficient solution for processing continuous range spatial keyword queries over moving spatio-textual objects (namely, CRSK-mo queries). Major challenges in efficient processing of CRSK-mo queries are as follows: (i) the query range is determined based on both spatial proximity and textual similarity; thus a straightforward spatial proximity based pruning of the search space is not applicable as any object far from a query location with a high textual similarity score can still be the answer (and vice versa), (ii) frequent location updates may invalidate a query result, and thus require frequent re-computing of the result set for any object updates. To address these challenges, the key idea of our approach is to exploit the spatial and textual upper bounds between queries and objects to form safe zones (at the client-side) and buffer regions (at the server-side), and then use these bounds to quickly prune objects and queries through smart in-memory data structures. We conduct extensive experiments with a synthetic dataset that verify the effectiveness and efficiency of our proposed algorithm.  相似文献   

17.
A survey of queries over uncertain data   总被引:1,自引:1,他引:0  
Uncertain data have already widely existed in many practical applications recently, such as sensor networks, RFID networks, location-based services, and mobile object management. Query processing over uncertain data as an important aspect of uncertain data management has received increasing attention in the field of database. Uncertain query processing poses inherent challenges and demands non-traditional techniques, due to the data uncertainty. This paper surveys this interesting and still evolving research area in current database community, so that readers can easily obtain an overview of the state-of-the-art techniques. We first provide an overview of data uncertainty, including uncertainty types, probability representation models, and sources of probabilities. We next outline the current major types of uncertain queries and summarize the main features of uncertain queries. Particularly, we present and analyze several typical uncertain queries in detail, such as skyline queries, top- $k$ queries, nearest-neighbor queries, aggregate queries, join queries, range queries, and threshold queries over uncertain data. Finally, we present many interesting research topics on uncertain queries that have not yet been explored.  相似文献   

18.
Skyline query processing over uncertain data streams has attracted considerable attention in database community recently, due to its importance in helping users make intelligent decisions over complex data in many real applications. Although lots of recent efforts have been conducted to the skyline computation over data streams in a centralized environment typically with one processor, they cannot be well adapted to the skyline queries over complex uncertain streaming data, due to the computational complexity of the query and the limited processing capability. Furthermore, none of the existing studies on parallel skyline computation can effectively address the skyline query problem over uncertain data streams, as they are all developed to address the problem of parallel skyline queries over static certain data sets. In this paper, we formally define the parallel query problem over uncertain data streams with the sliding window streaming model. Particularly, for the first time, we propose an effective framework, named distributed parallel framework to address the problem based on the sliding window partitioning. Furthermore, we propose an efficient approach (parallel streaming skyline) to further optimize the parallel skyline computation with an optimized streaming item mapping strategy and the grid index. Extensive experiments with real deployment over synthetic and real data are conducted to demonstrate the effectiveness and efficiency of the proposed techniques.  相似文献   

19.
Traditional spatial queries return, for a given query object q, all database objects that satisfy a given predicate, such as epsilon range and k-nearest neighbors. This paper defines and studies inverse spatial queries, which, given a subset of database objects Q and a query predicate, return all objects which, if used as query objects with the predicate, contain Q in their result. We first show a straightforward solution for answering inverse spatial queries for any query predicate. Then, we propose a filter-and-refinement framework that can be used to improve efficiency. We show how to apply this framework on a variety of inverse queries, using appropriate space pruning strategies. In particular, we propose solutions for inverse epsilon range queries, inverse k-nearest neighbor queries, and inverse skyline queries. Furthermore, we show how to relax the definition of inverse queries in order to ensure non-empty result sets. Our experiments show that our framework is significantly more efficient than naive approaches.  相似文献   

20.
The importance of query processing over uncertain data has recently arisen due to its wide usage in many real-world applications. In the context of uncertain databases, previous works have studied many query types such as nearest neighbor query, range query, top-k query, skyline query, and similarity join. In this paper, we focus on another important query, namely, probabilistic group nearest neighbor (PGNN) query, in the uncertain database, which also has many applications. Specifically, given a set, Q, of query points, a PGNN query retrieves data objects that minimize the aggregate distance (e.g., sum, min, and max) to query set Q. Due to the inherent uncertainty of data objects, previous techniques to answer group nearest neighbor (GNN) query cannot be directly applied to our PGNN problem. Motivated by this, we propose effective pruning methods, namely, spatial pruning and probabilistic pruning, to reduce the PGNN search space, which can be seamlessly integrated into our PGNN query procedure. Extensive experiments have demonstrated the efficiency and effectiveness of our proposed approach, in terms of the wall clock time and the speed-up ratio against linear scan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号