首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
The structure and magnetocaloric properties of La1–xCexFe11.44Si1.56 and their hydrides La1–xCexFe11.44Si1.56Hy(x=0, 0.1, 0.2, 0.3, 0.4) were investigated.The samples crystallized mainly in the cubic Na Zn13-type structure with a small amount of α-Fe phase as impurity.The lattice constants and Curie temperature presented the same change tendency with increasing of Ce content.For the hydrides, the influence of Ce content on lattice constants was weakened and the values of H concentration y were approximate to be 1.56.The La1–xCexFe11.44Si1.56 compounds exhibited large values of isothermal entropy change –ΔSm around the Curie temperature TC under a low magnetic field change of 1.5 T.The value of –ΔSm increased and then decreased with increasing Ce content, reached the maximum, 26.07 J/kg·K for x=0.3.TC increased up to the vicinity of room temperature by hydrogen absorption for the Ce substituted compounds, but TC only slightly decreased with increasing Ce content.The first-order metamagnetic transition was still kept in the hydrides and the maximum values of –ΔSm were lower than those of the La1–xCexFe11.44Si1.56 compounds, but still remained large values, about 10.5 J/kg K under a magnetic field change of 1.5 T.The values of –ΔSm were nearly independent of the Ce content and did not increase with increasing x for the hydrides.The La1–xCexFe11.44Si1.56Hy(x=0–0.4) hydrides exhibited large magnetic entropy changes, small hysteresis loss and effective refrigerant capacity covered the room temperature range from 305 to 317 K.These hydrides are very useful for the magnetic refrigeration applications near room temperature under low magnetic field change.  相似文献   

2.
Magnetocaloric effect and magnetic properties of La0.9Ce0.1(Fe0.99Mn0.01)11.6Si1.4 and its hydride La0.9Ce0.1(Fe0.99Mn0.01)11.6Si1.4H1.6 were investigated. The Curie temperature of La0.9Ce0.1(Fe0.99Mn0.01)11.6Si1.4 was increased by hydrogen absorption. XRD patterns showed that the structure of La0.9Ce0.1(Fe0.99Mn0.01)11.6Si1.4H1.6 remained NaZn13-type. The Curie temperature (TC) of the sample was increased from 174 K to 331 K. The homogeneity of the hydrogen absorption for La0.9Ce0.1(Fe0.99Mn0.01)11.6Si1.4H1.6 was proven very well by the random measurement of DSC. The magnetic entropy △SM of La0.9Ce0.1(Fe0.99Mn0.01)11.6Si1.4H1.6 had peak at 326 K. The peak value of-△SM-was 12.3 and 7.8 J/(kg.K) under magnetic field change of 0-2 T and 0-1 T,respectively,which was comparable with Gd5Si2Ge2. The negative slope and inflection point of the Arrott curve indicated that the first-order magnetic transition of La0.9Ce0.1(Fe0.99Mn0.01)11.6Si1.4 was reserved after hydrogen absorption.  相似文献   

3.
A systematic investigation on the structural, magnetic and magnetocaloric properties of Pr_(0.6)Sr_(0.4-x)Ag_xMnO_3(x=0.05 and 0.1) manganites was reported. Rietveld refinements of the X-ray diffraction patterns confirmed that all samples were single phase and crystallized in the orthorhombic structure with Pnma space group. Magnetic measurements in a magnetic applied field of 0.01T revealed that the ferromagnetic-paramagnetic transition temperature T_C decreased from about 293 to 290 K with increasing silver content from x=0.05 to 0.1. The reported magnetocaloric entropy change and relative cooling power for both samples were considerably remarkable with a △S_(max) value of 1.9 J/(kg·K)and maximum RCP values of 100 J/kg, under a magnetic field change(?μ0H) equal to 1.8T. The analysis of the universal curves gave an evidence of a second order magnetic transition for the studied samples. The magnetic field influence on both the magnetic entropy change and the relative cooling power was also studied and discussed.  相似文献   

4.
The relationship between isothermal magnetic entropy change △S and adiabatic temperature change △Tad was deduced according to the principles of thermodynamics. The MCE and the engineering application were discussed for Gd and several new kinds of magnetic refrigerating materials near room temperature, Gd5Si2Ge2, MnFeP0.45As0.55 and LaFe11.2Co0.7Si1.1. Isothermal entropy change is proportional to adiabatic temperature change with a factor of T/C (T is temperature, C is heat capacity). When the comparison of magnetacoloric effect is made for two different materials, we should consider isothermal entropy change as well as adiabatic temperature change.  相似文献   

5.
Compounds with the composition SmFex(x=3–8) were prepared by melt spun method at a velocity of 40 m/s and subsequent annealing at temperature between 600–1000 ℃. The crystal structures of the as-quenched and as annealed powders were investigated by XRD methods with following Rietveld analysis. The glass forming ability could be enhanced by the increase of Sm content to x≤5.Metastable Sm5Fe17-type structure existed when 3≤x≤5 and temperature was lower than 800 ℃. SmFe2-type structure could be stable up to 1000 ℃ when x〉3 and temperature was under 800 ℃. The content of SmFe2-type decreased with the increase of x value and increased with temperature lower than 800 ℃, from which SmFe2-type started to bring the transition to SmFe3-type. As for Sm5Fe17-type compounds with x=3.4, the highest coercivity of 33.6 kOe could be obtained under a velocity of 30 m/s and heat treated under 700 ℃×1h.  相似文献   

6.
The magnetocaloric effect in alloys Gd(Al1-xCox)2 with x = 0, 0.05, and 0.10 were investigated using X-ray diffraction (XRD) and magnetization measurements. It was found that three alloys crystallized in a single phase with MgCu2-type structure. The lattice parameter and Curie temperature decreased with increasing Co content, whereas the magnetic-entropy change increased. With a magnetic-field change of 2 T, the maximum of the magnetic-entropy change reached 4.6 J·kg^-1·K^-1 near Curie temperature at approximately 95 K in the alloy GdAl1.8Co0.2, which appeared to be an alternative candidate for active magnetic refrigerants working in the temperature range centered at 100 K.  相似文献   

7.
The phase relation, microstructure, Curie temperatures, hysteresis, and magnetocaloric effects of LaFex*11.6Si1.4 (x=0.96, 0.98, 1.0, and 1.02) compounds prepared by arc-melting and then annealed at 1423 K (1.5 h)+1523 K (4.5 h) were investigated. The main phase was NaZn13-type phase, the impurity phases included a small amount of α-Fe and LaFeSi phase in four samples. The crystal cell parameters of 1:13 phase increased from 1.1433(5) to 1.1454(4) nm with x increasing from 0.96 to 1.02, respectively. All samples kept the typical first-order magnetic transition. The increase of Fe strengthened IEM behavior, and led to the remarkable enhancement of MCE effect and negative slopes in Arrott plots around TC. The maximum ΔSM (T, H) under a low magnetic field (0-2 T) was 15.3, 16.8, 17.9, and 24.7 J/kg K with increasing of Fe content from x=0.96 to 1.02, respectively.  相似文献   

8.
A new Er2Mn2O7 compound was synthesized by the ceramic method and its crystal structure was characterized using powder X-ray diffraction (XRD) and observed by scanning electron microscopy (SEM). The magnetic properties were investigated using a BS2 magnetometer and the heat capacity was studied using a quantum design (PPMS). The structural study revealed that this compound was monophasic and crystallized in the monoclinic system with the P2/M space group. Magnetization measurements were carried out in the temperature range of 1.8-200 K under an applied magnetic field of 0.05 T. A crossover from a room temperature paramagnetic phase to an antiferromagnetic one at low temperature was detected from the magnetic study. The magnetic susceptibility, in the paramagnetic region above 40 K, was found to present a simple Curie-Weiss type behavior. From the specific heat (CP) measurements in magnetic fields up to 5 T, we noted the presence of a wide peak characteristic of a second order mag-neto-structural transition.  相似文献   

9.
The magnetic properties and the phase transformation of the partial substitution of Pr for La in LaFe11.4Si1.6 have been investigated by the means of X-ray diffraction (XRD) and vibrating sample magnetic (VSM). The results indicated that the single phase NaZn13-type cubic structure is stabilized for the compound La0.8Pr0.2Fe11.4Si1.6 and large values of the isothermal magnetic entropy change △SM around the curie temperature Tc~194 K in relative low magnetic fields. The maximum value |△SM|max~37.07J/kg·K-1 under a field of 1.5 T. Such large MCEs are attributed to the sharp change of the magnetization at the Curie temperature, the field-induced IEM transition and a strong temperature dependence of the critical field BC.  相似文献   

10.
We investigated the magnetocaloric effect in commercial Er_2 O_3 powders which presents almost no hysteresis losses at low temperature.At a magnetic field change of 5 T,it displays large magnetic entropy change(-ΔS_M)_(max) of 15.02 J/(kg·K) and a refrigerant capacity(RC) of 311 J/K at Neel temperature T_N=3.32 K.The magnetic transition was found to be of a second-order.The maximum values of adiabatic temperature change(ΔT_(ad))_(max) reach 0.70 K for a magnetic field change of 1 T.The large value,of(-AS_M)_(max) as well as no hysteresis loss,makes Er_2 O_3 a promising material as a magnetic refrigerant at low temperature.  相似文献   

11.
Although the thermistor and metal to insulator transition bi-functionalities were discovered for rareearth nickelates(RENiO3),the electronic stability in their correlated transports under impulse voltage or magnetic field remain as open questions.Herein,we demonstrate the thermistor transportations of the electron correlated rare-earth nickelates under impulse direct current voltage and in magnetic environment.The insulating phase of RENiO3 shows zero crossing linear I-V characters,indicating their stable electronic resistance is independent of the imparted voltage up to 10 V and pulse width down to1 us,in spite of their sensitive electronic structures to polarizations.In addition,the high electronic stability associated with the thermistor transportation of RENiO3 is also demonstrated in magnetic fields up to 9 T(i.e.,MR<0.2%).The high electronic stability further paves the way to applying RENiO3 as a broad temperature range thermistor in temperature sensing or circuit protections for correlated electronics.  相似文献   

12.
A low cost Gd_(34)Ni_(33)Al_(33) metallic glass with excellent magnetocaloric properties was successfully prepared in the present work.The magnetic properties of the ribbons were measured by constructing the relationship of magnetic entropy change(-ΔS_m) on temperature as well as magnetic field.The amorphous alloy shows typical magnetocaloric behaviors,large maximum-ΔS_m(11.06 J/(kg·K) under 5 T)and adiabatic temperature rise(4.3 K under 5 T) near 40 K,indicating that the low cost Gd_(34)Ni_(33)Al_(33)metallic glass is a good candidate material for low temperature magnetic refrigeration.  相似文献   

13.
The early divisions of sea urchin eggs was used as a model to study the effects of static and of 60 Hz sinusoidal magnetic fields. Two species were used (Sphaerechinus granularis and Paracentrotus lividus). Eggs were fertilized and exposed in two separate coils to the fields (up to 8 mT). Great care was taken to control the temperature of each sample. No difference was found in the time of the first division that could not be attributed to a temperature difference between samples. Comparison is made with other published data on various species.  相似文献   

14.
The present paper is aimed at showing how solidification of metallic alloys can be influenced by AC or DC magnetic fields through various types of effects. The application of AC magnetic fields leads to the generation of either fluid flows or vibration. It has been shown both numerically and experimentally that the electromagnetically-driven flows created by travelling or rotating magnetic fields promoted segregations and influenced their distribution. The flow may also promote the CET thanks to its effects on both the temperature and solute fields as well as the possible fragmentation mechanism. As far as DC magnetic fields are concerned, it was known that they usually exert a damping of the bulk fluid flows. However, it has been shown recently that for some alloys high intensity magnetic field interacts with the small thermoelectric current to create significant electromagnetic forces which are responsible for strong liquid metal flows both in the bulk and in the mushy zone. Orientation changes as well as possible modifications of thermodynamic properties were also observed.  相似文献   

15.
The effect of high magnetic fields up to 132 kOe on the martensite transformation has been investigated in two alloy steels, 52100 bearing steel and a type 410 stainless steel. In both cases the martensite start temperature is raised by the application of a magnetic field, and the increase inM s is linear with field. The rate of formation of martensite is not affected by the field. Numerical values for the entropy of the austenite-martensite reaction can be obtained from the experimental results, and are in reasonable agreement with previous results and with theoretical calculations. Richard Fields was formerly a student.  相似文献   

16.
Experiments were undertaken in order to verify whether or not a strong magnetic field would have any biological effects on the cell growth, viability and radiation response of mammalian cells. Magnetic field exposures were conducted using a superconducting magnet with freshly-isolated human peripheral blood T-lymphocytes maintained at their normal growing temperature of 37 degrees C. The static magnetic fields with intensities up to 6.3-tesla (T) exerted little influence on the cell growth and viability of actively-growing T-lymphocytes under normal cell-culture conditions. On the other hand, the T cells exposed to the magnetic fields (4 T-6.3 T) during PHA stimulation were inhibited in their cell growth when compared to controls. The effects of the magnetic fields with intensities up to 2 T on cell growth properties, however, were minimal in this system. Also, the radiosensitivity of T-lymphocytes previously exposed to the strong magnetic fields was more sensitive than that of control cells. These results suggest that exposure to a static magnetic field of 4 T or stronger might lead to physiological and growth abnormalities at the cellular level.  相似文献   

17.
Magnetic Entropy Change of (Gd_(1-x)RE_x)_5Si_4(RE=Dy, Ho) Alloys  相似文献   

18.
The effect of high magnetic fields up to 132 kOe on the martensite transformation has been investigated in two alloy steels, 52100 bearing steel and a type 410 stainless steel. In both cases the martensite start temperature is raised by the application of a magnetic field, and the increase inM s is linear with field. The rate of formation of martensite is not affected by the field. Numerical values for the entropy of the austenite-martensite reaction can be obtained from the experimental results, and are in reasonable agreement with previous results and with theoretical calculations.  相似文献   

19.
The effects of magnetic heat treatment on magnetostriction properties of Tb0.3Dy0.7Fe1.95 alloy were investigated.The directionally solidified alloy was heated to various temperatures near Curie temperature TC in vacuum, kept for a certain time under the application of magnetic field and then cooled to room temperature.The magnetostriction coefficient was measured by a resistance strain gage.The crystal structure was analyzed by X-ray diffraction (XRD).The experimental results show that the magnetostriction coefficient obviously increases and the grains orientations along the axis changed somewhat as the field of 1 T vertical to axis of the rod-shaped specimen is applied for 5 min at the heating temperature slightly lower than TC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号