首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
The capabilities of structural bonding are more and more used. Estimating the abilities of an adhesive to endure repetitive loadings and to keep stable its mechanical properties along service life is an essential point to analyze in order to conduct fatigue assessments. The aim of this study is to develop a predictive tool for describing the fatigue behavior of an adhesive in an assembly under cyclic loadings. The approach developed analyzes the influence of viscosity on the mechanical behavior of an adhesive in an assembly based on monotonic and creep test results. Thanks to the evaluation of viscous phenomena, it is possible to predict the cyclic response of the adhesive. The experimental approach uses a unique bonded joint designed to limit the stress concentrations and with a maximum stress state in the center of the adhesive. In this paper, following the strategy developed under monotonic loading, experimental results under cyclic loading are presented for different types of loading using several load ratios and amplitudes. These results underline that the evolution of viscous deformations depends on the loading type. Under shear loading and for a ductile structural adhesive, the experimental results are well described using a viscoelastic–viscoplastic constitutive model with nonlinear viscous parameters. This model makes it possible to analyze the influence of different parameters on the mechanical response of bonded joints under cyclic shear loadings.  相似文献   

2.
The use of adhesives to replace mechanical connectors and other joining methods has enjoyed rapid growth in recent years. There are a number of issues of concern in the design of joints bonded using electronically-conductive adhesives (ECAs). One of these is the cyclic fatigue behavior of conductive adhesive interconnects under different environmental conditions, in which fatigue failure might occur due either to mechanical or thermal stresses varying in a cyclic manner. This paper addresses the effect of elevated temperatures on the fatigue and failure behavior of ECAs. For this purpose, joints were prepared using stainless steel adherend specimens bonded with a commercial ECA, and tested using monotonic and cyclic loadings, at two elevated temperatures, namely 50°C and 90°C. When the temperature was increased to 90°C, close to the glass transition temperature of the adhesive, we observed consistently parallel fatigue curves at different load ratios (R = P min /P max) for joints, as in the case of 50°C test condition, along with significant reduction in fatigue lives. Joint failure mechanisms were also analyzed using optical techniques, and joint conductivity measurements.  相似文献   

3.
Adhesive bonding is an interesting structural assembling technique which requires accurate numerical models in order to optimize the design of high-tech applications. In this paper, following the strategy previously developed for monotonic loadings, crack initiation in adhesively-bonded joints, under various tensile/compression–shear cyclic loadings is analyzed using a modified Arcan device with a single bonded joint designed to strongly limit stress concentrations. Moreover, such a system is associated with the maximum stress state in the center of the adhesive, and thus, allows the analysis of some influences of the stress triaxiality. Experimental results, for a ductile adhesive, under cyclic loadings are presented for different load amplitudes and mean loads; they underline that the evolutions of viscous deformations and of damage depend on the loading type.  相似文献   

4.
5.
Double Cantilever Beam (DCB) specimens were made from aluminium plates bonded with Hysol®EA9321 epoxy adhesive. These were tested both under monotonic and cyclic loading conditions. Experimental testing data were obtained from classic force and displacement measurements, as well as from backface strain recordings. Apart from the usual crack propagation monitoring, evolution of the process zone at the crack tip was studied during the experiment. Results of fatigue were compared with those of standard loading. Despite the viscoelastic nature of the adhesive, an elastic treatment of the results proved most satisfactory. In addition, good agreement was found between experimental and theoretical results obtained with a Timoshenko beam on Winkler elastic foundation model.  相似文献   

6.
The performance of adhesively-bonded joints under monotonic and cyclic-fatigue loading has been investigated using a fracture-mechanics approach. The joints consisted of an epoxy film adhesive which was employed to bond aluminium-alloy substrates. The effects of undertaking cyclic-fatigue tests in (a) a ‘dry’ environment of 55% relative humidity at 23°C, and (b) a ‘wet’ environment of immersion in distilled water at 28°C were investigated. In particular, the influence of employing different surface pretreatments for the aluminium-alloy substrates was examined. In addition, single-lap joints were tested under cyclic fatigue loading in the two test environments, and a back-face strain technique has been used which revealed that crack propagation, rather than crack initiation, occupied the dominant proportion of the fatigue lifetime of the single-lap joints. In Part II, the data obtained in the present Part I paper will be employed to predict theoretically the lifetime of the adhesively-bonded single-lap joint specimens.  相似文献   

7.
8.
Unidirectional and cross-ply Nicalon fiber-reinforced calcium aluminosilicate (CAS) glass-ceramic composite specimens were subjected to tension–tension cyclic fatigue and static fatigue loadings. Microcrack densities, longitudinal Young's modulus, and major Poisson's ratio were measured at regular intervals of load cycles and load time. The matrix crack (0° plies) density and transverse crack (90° plies) density increased gradually with fatigue cycles and load time. The crack growth is environmentally driven and depends on the maximum load and time. Young's modulus and Poisson's ratio decreased gradually with fatigue cycles and load time. The saturation crack densities under fatigue loadings were found to be comparable to those under monotonic loading. A matrix crack growth limit strain exists, below which matrix cracks do not grow significantly under fatigue loading. This limit coincides with the matrix crack initiation strain. Linear correlations between crack density and moduli reductions obtained from quasi-static data can predict the moduli reductions under cyclic loading, using experimentally measured crack densities. A logarithmic correlation can predict the Young's modulus reduction in a limited stress range. A fatigue crack growth model is proposed to explain the presence of two distinct regimes of crack growth and Young's modulus reduction.  相似文献   

9.
Conductive adhesives are used in electronics packaging applications for hybrid, die-attach and display assemblies. There are a number of issues of concern in the design of joints bonded using electronically-conductive adhesives (ECAs). An important issue is the cyclic fatigue behavior of conductive adhesive joints under elevated humidity environments, in which failures may occur due to cyclic mechanical and/or thermal stresses. This paper addresses the effect of elevated humidity levels on the fatigue and failure behaviors of ECAs. For this purpose, joints were prepared using stainless-steel adherend specimens and a commercial ECA, and tested under monotonic and cyclic fatigue conditions, at two humidity levels, namely 20% and 90% relative humidity at 28°C. Furthermore, joint failure mechanisms were analyzed using optical techniques, and joint conductivity measurements. Load versus number of cycles (PN) curves were generated using these specimens at three different load ratios (R), namely 0.1, 0.5 and 0.9, at a cyclic frequency of 150 Hz. The PN curves were parallel and the failure modes were found to be predominantly interfacial, accompanied by a significant decrease in joint conductivity.  相似文献   

10.
A cocured joint whose manufacturing process is simpler than that of an adhesively bonded joint is attractive for composite structures due to its several benefits. Fatigue behavior in the cocured joint is important because under alternating loads it will fail at stress levels much lower than it can withstand under monotonic loading. Although some researchers have recently reported on cocured joints, there are only a few articles published on the fatigue characteristics of cocured joints. In this article, effects of bond parameters on fatigue characteristics of a steel-composite cocured double lap joint under cyclic tensile loads were experimentally investigated. In order to observe stress distributions near the interface edge of the cocured double lap joint, finite element analysis was also performed. We considered the surface roughness of the steel adherend and the stacking sequence of the composite adherend as bond parameters. A fatigue failure mechanism of the cocured double lap joint was explained systematically by investigating the surfaces of failed specimens and stress distributions at the interface edge. Failure criteria of the cocured double lap joint under cyclic tensile loads were shown graphically.  相似文献   

11.
Adhesively bonded joints can support a longer fatigue life if compared to conventional joining techniques, provided that a set of requirements is fulfilled. One of the most important requirements is the mechanical preparation of the bonded joint surface, which improves the joint interface adhesion. The aim of this work is to investigate the influence of surface roughness of mild steel substrates on fatigue behavior in adhesive bonded plates. To accomplish this objective, three different surface treatments were used on A36 steel substrate specimens, namely sand blasting, grit blasting, and bristle blasting. Bonded plate specimens, using end-notched flexure format, with a thin adhesive epoxy layer were manufactured and tested, under mode II loading condition, in both static and dynamic tests. The results confirm the importance of surface treatment of the substrate on the fatigue life, confirming that adhesively bonded joints have significant performance differences when subjected to static and dynamic loadings.  相似文献   

12.
An investigation of an adhesively bonded composite joint with a brittle adhesive was conducted to characterize both the static and fatigue debond growth mechanism under mode I and mixed mode I-II loadings. The bonded system consisted of graphite/epoxy adherends bonded with FM-400 adhesive. Two specimen types were tested: (1) a double-cantilever-beam specimen for mode I loading and (2) a cracked-lap-shear specimen for mixed mode I-II loading. In all specimens tested, failure occurred in the form of debond growth either in a cohesive or adhesive manner. The total strain-energy-release rate is not the criterion for cohesive debond growth under static and fatigue loading in the birttle adhesive as observed in previous studies with the ductile adhesives. Furthermore, the relative fatigue resistance and threshold value of cyclic debond growth in terms of its static fracture strength is higher in the brittle adhesive than its counterpart in the ductile adhesive.  相似文献   

13.
A cocured joint whose manufacturing process is simpler than that of an adhesively bonded joint is attractive for composite structures due to its several benefits. Fatigue behavior in the cocured joint is important because under alternating loads it will fail at stress levels much lower than it can withstand under monotonic loading. Although some researchers have recently reported on cocured joints, there are only a few articles published on the fatigue characteristics of cocured joints. In this article, effects of bond parameters on fatigue characteristics of a steel-composite cocured double lap joint under cyclic tensile loads were experimentally investigated. In order to observe stress distributions near the interface edge of the cocured double lap joint, finite element analysis was also performed. We considered the surface roughness of the steel adherend and the stacking sequence of the composite adherend as bond parameters. A fatigue failure mechanism of the cocured double lap joint was explained systematically by investigating the surfaces of failed specimens and stress distributions at the interface edge. Failure criteria of the cocured double lap joint under cyclic tensile loads were shown graphically.  相似文献   

14.
In this paper, a new mode-dependent cohesive zone model for the simulation of metal to metal adhesive joints is directly determined. Three consecutive steps have been taken into account for this end. First, double cantilever beam (DCB) and end-notched flexure (ENF) specimens are utilized for the direct experimental extraction of the traction-separation laws (TSLs) for adhesive bonded joints subjected to pure mode I and mode II, respectively. Next, the results are implemented to obtain the relative cohesive zone parameters for defining the simplified Park-Paulino-Roesler cohesive zone model (S-PPR CZM). Finally, mixed-mode characteristics parameters are derived for an arbitrary mode-mixity ratio based on pure mode TSLs. The model is further implemented in ABAQUS® commercial software to be verified against the experimental results of pure mode loadings which leads to the direct extraction of TSLs. The experiments conducted on the strength of single lap joint (SLJ) and scarf joint (SJ) specimens, commonly tested for mixed-mode loading, confirm the accuracy of the developed mixed-mode S-PPR model for different mode-mixity conditions.  相似文献   

15.
The stress wave propagations in butt adhesive joints of similar hollow cylinders subjected to static and impact tensile loadings are analyzed in elastic and elasto-plastic deformation ranges using the finite-element method (FEM). The impact loading is applied to the joint by dropping a weight. The upper end of the upper adherend is fixed and the lower adherend of which the lower end is connected to a guide bar is subjected to the impact loading. The FEM code employed is DYNA3D. The effects of the adhesive thickness and Young's modulus of the adhesive on the stress wave propagation at the interfaces are examined. In addition, the characteristics of the joints subjected to impact loadings are compared with those of the joints under static loadings and the joint strengths are estimated by using the interface stress distributions. It is found that the maximum value of the maximum principal stress, σ1 occurs at the outside edge of the interface of the lower adherend to which the impact loading is applied. The maximum value of the maximum principal stress, σ1 increases as Young's modulus of the adhesive increases when the joints are subjected to impact loadings. It is found that the characteristics of the joints subjected to impact loadings are opposite to those subjected to static loadings. In addition, experiments were carried out to measure the strain response of the butt adhesive joints subjected to impact and static tensile loadings using strain gauges and the joint strengths were also measured. Fairy good agreements are observed between the numerical and the measured results.  相似文献   

16.
Adhesive joints have been widely used for fastening thin adherends because they can distribute the load over a larger area than mechanical joints, require no holes, add very little weight to the structure and have superior fatigue resistance. Since the reliability of an adhesive joint is dependent on many parameters, such as the shape of joint, type of applied load and environment, an accurate prediction of the fatigue life of adhesive joints is seldom possible, which necessitates an in situ damage monitoring of the joints during their operation. Recently, a piezoelectric method using the piezoelectric characteristics of epoxy adhesives has been successfully developed for adhesive joints because it can continuously monitor the damage of adhesively bonded structures without producing any defects induced by inserting a sensor. Therefore, in this study, the damage of adhesive joints was monitored by the piezoelectric method during torsional fatigue tests in order to develop the diagnosis criterion for damage monitoring of adhesive joints by the piezoelectric method. The diagnosis criterion was developed by analyzing damage monitoring signals under various test conditions and adopting normalized parameters.  相似文献   

17.
An investigation of an adhesively bonded composite joint with a brittle adhesive was conducted to characterize both the static and fatigue debond growth mechanism under mode I and mixed mode I-II loadings. The bonded system consisted of graphite/epoxy adherends bonded with FM-400 adhesive. Two specimen types were tested: (1) a double-cantilever-beam specimen for mode I loading and (2) a cracked-lap-shear specimen for mixed mode I-II loading. In all specimens tested, failure occurred in the form of debond growth either in a cohesive or adhesive manner. The total strain-energy-release rate is not the criterion for cohesive debond growth under static and fatigue loading in the birttle adhesive as observed in previous studies with the ductile adhesives. Furthermore, the relative fatigue resistance and threshold value of cyclic debond growth in terms of its static fracture strength is higher in the brittle adhesive than its counterpart in the ductile adhesive.  相似文献   

18.
19.
20.
The impact strength of joints bonded with a double-coated high-strength pressure-sensitive adhesive (PSA) was experimentally investigated. PSA has recently been used to join parts of mobile devices such as smart-phones, which are often subjected to drop impacts. Consequently, the impact strength of PSA bonded joints has become important.Two types of specimens, butt joint specimens and double cantilever beam (DCB) specimens bonded with adhesives were utilized for the experiments. Quasi-static tests and impact tests of the specimens were carried out using a mechanical testing machine and an impact testing machine. The PSA layers in the specimens were observed using a high-speed digital camera. The deformation and strain distribution in the adherends of the DCB specimens were also measured using a novel high-speed digital camera with photoelastic imaging capability.Though the strength of the butt joints increased as the loading rate increased, the critical fracture energy of the DCB specimens decreased at high loading rates. This may be attributed to the transition to the brittle nature of the PSA in the loading range in which no cavitation occurred. To verify the critical fracture energy obtained with the DCB tests, finite element analyses (FEA) based on the cohesive zone model (CZM) were carried out, and the load–displacement curves of the DCB tests were simulated. The predicted results showed good agreements with the experimental results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号