首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We outline a speculative design for a photodetachment neutraliser for a negative ion neutral beam system, with neutralisation efficiency of 95% or more. The practical difficulties are enormous. The ion beam must pass through an optical cavity capable of reflecting the light many times. For 500 reflections, the laser optical power output ∼800 kW, giving circulating power ∼400 MW. All sources of light loss combined need to be kept to 0.2% or less per pass. The losses due to photodetachment itself, and due to Thomson scattering in the beam plasma are negligible. A key task is to maintain the reflectance of the mirrors above 99.97% for long periods of operation, protecting all the components from thermal and neutron damage, and from caesium, sputtered atoms and other contamination. A diode-pumped Nd-doped YAG laser can have overall electrical-to-light (“wall-plug”) efficiency up to 25%. A DEMO concept reactor such as the EU Power Plant Conceptual Study (PPCS) Model B requires 270 MW heating power. If this is all provided by neutral beams, then a laser neutraliser might reduce the electrical power consumption for this from 900 MW to 520 MW.  相似文献   

2.
Based on scientific databases adopted for designing ITER plasmas and on the advancement of fusion nuclear technology from the recent R&D program, a low wall-loading DEMO fusion reactor has been designed, where high priority has been given to the early and reliable realization of a tokamak fusion plasma over the cost performance. Since the major radius of this DEMO reactor is chosen to be 10 m, plasma ignition is achievable with a low fusion power of 0.8 GW and an operation period of 4–5 hours is available only with inductive current drive. The low ignition power makes it possible to adopt a first wall with an austenitic stainless steel, for which significant databases and operating experience exists, due to its use in the presence of neutron irradiation in fission reactors. In step with development of advanced materials, a step-wise increase of the fusion power seems to be feasible and realistic, because this DEMO reactor has the potential to produce a fusion power of 5 GW.  相似文献   

3.
The construction and operation of an intense 14-MeV neutron source is essential for the development and eventual qualification of structural materials for a fusion reactor demonstration plant (DEMO). Because of the time required for materials development and the scale-up of materials to commercial production, a decision to build a neutron source should precede engineering design activities for a DEMO by at least 20 years. The characteristic features of 14-MeV neutron damage are summarized including effects related to cascade structure, transmutation production, and dose rate. The importance of a 14-MeV neutron source for addressing fundamental radiation damage issues, alloy development activities, and the development of an engineering database is discussed. For these considerations, the basic requirements and machine parameters are derived.  相似文献   

4.
《Fusion Engineering and Design》2014,89(9-10):1989-1994
A leading power reactor breeding blanket candidate for a fusion demonstration power plant (DEMO) being pursued by the US Fusion Community is the Dual Coolant Lead Lithium (DCLL) concept. The safety hazards associated with the DCLL concept as a reactor blanket have been examined in several US design studies. These studies identify the largest radiological hazards as those associated with the dust generation by plasma erosion of plasma blanket module first walls, oxidation of blanket structures at high temperature in air or steam, inventories of tritium bred in or permeating through the ferritic steel structures of the blanket module and blanket support systems, and the 210Po and 203Hg produced in the PbLi breeder/coolant. What these studies lack is the scrutiny associated with a licensing review of the DCLL concept. An insight into this process was gained during the US participation in the ITER Test Blanket Module (TBM) Program. In this paper we discuss the lessons learned during this activity and make safety proposals for the design of a Fusion Nuclear Science Facility (FNSF) or a DEMO that employs a lead lithium breeding blanket.  相似文献   

5.
For the water-cooled solid blanket of DEMO, the nuclear analysis was performed based on present cooling piping system. Especially, distributions of neutron load and temperature were calculated with Pn is 5 MW/m2. Furthermore, the local TBR was optimized by changing the material proportion for each Pn level (1-5 MW/m2). It was confirmed that the size of cooling loop for sub-critical water could be used as about 2000 × 450 mm and the cooling pipe diameter of D is 12 mm, d is 9 mm at v is 5.36 m/s. The pipe pitches would vary with Pn level which is related to the blanket structure design. Nuclear heat distribution is the base to decide the distribution of cooling pipe positions. It was found that the local TBR of blanket would be dropped down along with the Pn level rising which was mainly depended on the thickness of beryllium variation. Finally, the layout of cooling pipes for each level was obtained.  相似文献   

6.
A new and innovative core design for a research reactor is presented. It is shown that while using the standard, low enriched uranium as fuel, the maximum thermal flux per MW of power for the core design suggested and analyzed here is greater than those found in existing state of the art facilities without detrimentally affecting the other design specs. A design optimization is also carried out to achieve the following characteristics of a pool type research reactor of 10 MW power: high thermal neutron fluxes; sufficient space to locate facilities in the reflector; and an acceptable life cycle. In addition, the design is limited to standard fuel material of low enriched uranium. More specifically, the goal is to maximize the maximum thermal flux to power ratio in a moderate power reactor design maintaining, or even enhancing, other design aspects that are desired in a modern state of the art multi-purpose facility. The multi-purpose reactor design should allow most of the applications generally carried out in existing multi-purpose research reactors. Starting from the design of the German research reactor, FRM-II, which delivers high thermal neutron fluxes, an azimuthally asymmetric cylindrical core design with an inner and outer reflector, is developed. More specifically, one half of the annular core (0 < θ < π) is thicker than the other half. Two variations of the design are analyzed using MCNP, ORIGEN2 and MONTEBURNS codes. Both lead to a high thermal flux zone, a moderate thermal flux zone, and a low thermal flux zone in the outer reflector. Moreover, it is shown that the inner reflector is suitable for fast flux irradiation positions. The first design leads to a life cycle of 41 days and high, moderate and low (non-perturbed) thermal neutron fluxes of 4.2 × 1014 n cm−2 s−1, 3.0 × 1014 n cm−2 s−1, and 2.0 × 1014 n cm−2 s−1, respectively. Heat deposition in the cladding, coolant and fuel material is also calculated to determine coolant flow rate, coolant outlet temperature and maximum fuel temperature under steady-state operating conditions. Finally, a more compact version of the asymmetric core is developed where a maximum (non-perturbed) thermal flux of 5.0 × 1014 n cm−2 s−1 is achieved. The core life of this more compact version is estimated to be about 23 days.  相似文献   

7.
This paper is based on the remote maintenance system project (WPRM) for the demonstration fusion power reactor (DEMO). Following ITER, DEMO aims to confirm the capability of generating several hundred of MW of net electricity by 2050. The main objective of these activities is to develop an efficient and reliable remote handling (RH) system for replacing the divertor cassettes.This paper presents the preliminary results of the concept design of the divertor RH system. The proposed divertor mover is a hydraulic telescopic boom driven from the transportation cask through the maintenance tunnel of the reactor. The boom is divided in three sections of 4 m each, and it is driving an end-effector in order to perform the scheduled operations of maintenance inside the vacuum vessel.Two alternative design of the end effector to grip and manipulate the divertor cassette are also presented in this work. Both the concepts are hydraulically actuated, basing on the ITER previous studies. The divertor cassette end-effector consists of a lifting arm linked to the divertor mover, a tilting plate, a cantilever arm and a hook-plate.The main objective of this paper is to illustrate the feasibility of DEMO divertor remote maintenance operations.  相似文献   

8.
One important objective of the EU fusion roadmap Horizon 2020 is to lay the foundation of a Demonstration Fusion Power Reactor (DEMO) to follow ITER, with the capability of generating several 100 MW of net electricity to the grid and operating with a closed fuel-cycle by 2050. This is currently viewed by many of the nations engaged in the construction of ITER as the remaining crucial step towards the exploitation of fusion power. This paper outlines the DEMO design and R&D approach that is being adopted in Europe and presents some of the preliminary design options that are under evaluation as well as the most urgent R&D work that is expected to be launched in the near-future. The R&D on materials for a near-term DEMO is discussed in detail elsewhere.  相似文献   

9.
An international joint project of fusion experimental reactor, the ITER (International Thermonuclear Experimental Reactor), is reviewed in view of long-range fusion energy research and development (R&D). Its purpose, goal, evolution, and the present construction status are briefly reviewed. While the ITER is a core machine in the present stage, generation of electricity is a role of the next-step fusion demonstration power plant “DEMO.” The status of designs and technology R&D for DEMO are also reviewed.  相似文献   

10.
This work was focused on the neutronic calculation of the nuclear parameters (neutron spectrum, displacement per atom (DPA), gas production, tritium breeding ratio (TBR), nuclear heating) for structural materials in the first wall (FW) and fuel clad (made of ferritic/martensitic steels, vanadium alloy, silicon carbide, copper alloy, and stainless steel) of an experimental hybrid reactor using the most current Monte Carlo Neutron-Particle Transport code MCNP5 1.4. Neutronic calculations were performed using a (DT) fusion driver hybrid reactor under a neutron wall loud of 2.25 MW/m2 by full reactor power for one year. Obtained results were compared with three different data libraries (ENDF/B-V, ENDF/B-VI and CLAW-IV). TBR values in the reactor blanket for all investigated materials became greater than the minimum requirement (TBR > 1.05). Nuclear parameters like DPA, He-production and nuclear heating were considered as radiation damage limits for structural materials, copper alloy (Cu0.5Cr0.3Zr) showed better performance than all investigated materials.  相似文献   

11.
《Fusion Engineering and Design》2014,89(9-10):2033-2037
Management strategy of radioactive waste generated in periodic replacement may be important in the point of view of fusion reactor design, because it has a large impact on the design of the hot cell and waste storage in the plant. In the replacement period of a fusion power reactor, the assembly of blanket or divertor modules needs to be removed from the reactor in order to minimize remote maintenance in the vacuum vessel and to attain reasonable plant availability. In the hot cell, the modules will be removed from the back plate of the assembly. Here, note that the active cooling must be done by a way that does not cause contamination of the hot cell environment due to dispersion of tritium and tungsten dust. In this sense, the cooling scenario is adopted that the existing pipe of cooling water in the assembly is connected to a different cooling water system in the hot cell. On the other hand, it is assumed that the structural material (F82H) of the blanket and divertor is not recycled due to its high contact dose rate. It should be crushed into small pieces to reduce volume of the waste and required storage space. In this paper, the basic idea of the waste management scenario and the conceptual design in the hot cell and waste storage for DEMO has been proposed.  相似文献   

12.
The international fusion materials irradiation facility (IFMIF) is an accelerator-based intense 14 MeV neutron source for testing fusion reactor materials. Under broader approach (BA) agreement between EURATOM and Japan, the engineering validation and engineering design activity (EVEDA) were started from 2007. The IFMIF needs the post irradiation examination (PIE) facilities to generate a materials irradiation database for the design and licensing of fusion DEMO reactors. In this study we examined and discussed about the safety such as remote handling, hot cell design, and the equipments and apparatus of hot cells, and we summarized a basic design guideline for the preliminary engineering design of the PIE facilities.  相似文献   

13.
《Fusion Engineering and Design》2014,89(9-10):1995-2000
One of the strong motivations for pursuing the development of fusion energy is its potentially low environmental impact and very good safety performance. But this safety and environmental potential can only be fully realized by careful design choices. For DEMO and other fusion facilities that will require nuclear licensing, S&E objectives and criteria should be set at an early stage and taken into account when choosing basic design options and throughout the design process.Studies in recent decades of the safety of fusion power plant concepts give a useful basis on which to build the S&E approach and to assess the impact of design choices. The experience of licensing ITER is of particular value, even though there are some important differences between ITER and DEMO. The ITER project has developed a safety case, produced a preliminary safety report and had it examined by the French nuclear safety authorities, leading to the licence to construct the facility. The key technical issues that arose during this process are recalled, particularly those that may also have an impact on DEMO safety. These include issues related to postulated accident scenarios, environmental releases during operation, occupational radiation exposure, and radioactive waste.  相似文献   

14.
《Fusion Engineering and Design》2014,89(9-10):2028-2032
After the Fukushima Dai-ichi nuclear accident, a need for assuring safety of fusion energy has grown in the Japanese (JA) fusion research community. DEMO safety research has been launched as a part of Broader Approach DEMO Design Activities (BA-DDA). This paper reports progress in the fusion DEMO safety research conducted under BA-DDA. Safety requirements and evaluation guidelines have been, first of all, established based on those established in the Japanese ITER site invitation activities. The radioactive source terms and energies that can mobilize such source terms have been assessed for a reference DEMO concept. This concept employs in-vessel components that are cooled by pressurized water and built of a low activation ferritic steel (F82H), contains solid pebble beds made of lithium-titanate (Li2TiO3) and beryllium–titanium (Be12Ti) for tritium breeding and neutron multiplication, respectively. It is shown that unlike the energies expected in ITER, the enthalpy in the first wall/blanket cooling loops is large compared to the other energies expected in the reference DEMO concept. Reference accident event sequences in the reference DEMO in this study have been analyzed based on the Master Logic Diagram and Functional Failure Mode and Effect Analysis techniques. Accident events of particular concern in the DEMO have been selected based on the event sequence analysis and the hazard assessment.  相似文献   

15.
In this paper water-cooled divertor concepts based on tungsten monoblock design identified in previous studies as candidate for fusion power plant have been reviewed to assess their potential and limits as possible candidates for a DEMO concept deliverable in a short to medium term (“conservative baseline design”). The rationale and technology development assumptions that have led to their selection are revisited taking into account present factual information on reactor parameters, materials properties and manufacturing technologies.For that purpose, main parameters impacting the divertor design are identified and their relevance discussed. The state of the art knowledge on materials and relevant manufacturing techniques is reviewed. Particular attention is paid to material properties change after irradiation; phenomenon thresholds (if any) and possible operating ranges are identified (in terms of temperature and damage dose). The suitability of various proposed heat sink/structural and sacrificial layer materials, as proposed in the past, are re-assessed (e.g. with regard to the possibility of reducing peak heat flux and/or neutron radiation damages). As a result, potential and limits of various proposed concepts are highlighted, ranges in which they could operate (if any) defined and possible improvements are proposed.Identified missing point in materials database and/or manufacturing techniques knowledge that should be uppermost investigated in future R&D activities are reported.This work has been carried out in the frame of EFDA PPPT Work Programme activities.  相似文献   

16.
The pulsed thermonuclear demonstration reactor (DEMO) features challenging operational conditions such as high neutron fluxes, high temperatures, and significant thermo-mechanical stresses. These conditions do not require only a selection of advanced structural materials, but also the development of reliable means to assemble the in-vessel components together; allowing thermal expansions, disassembly, and maintenance in attractive scenarios. Over the course of DEMO lifetime, the materials are subjected to embrittlement by neutron irradiation, swelling, considerable thermo-mechanical fatigue and creep. Traditional joining methods may be rarely used in the harsh fusion environment to assemble different components. In addition any proposed layout should cope with the limited space available inside the vacuum vessel (VV).The objective of this study is to review the proposed attachment systems (developed within the latest European DEMO Conceptual Study) for the vertical segmentation concept called “multi module segments” (MMS). In order to find some place to house the attachments the blanket is cut respecting the Tritium Breeding Ratio limit for tritium self sufficiency. The conditions, neutronic and thermal, in which the attachments are supposed to operate, are calculated. The effects of pulsed operations have also been taken into account. The design of the attachments with the available structural materials with and without an active cooling system is analysed and a new concept for plug/unplug attachments is also suggested.  相似文献   

17.
《Fusion Engineering and Design》2014,89(7-8):1341-1345
This work aims to give an outline of the design requirements of the helium cooled pebble bed (HCPB) blanket and its associated R&D activities. In DEMO fusion reactor the plasma facing components have to fulfill several requirements dictated by safety and process sustainability criteria. In particular the blanket of a fusion reactor shall transfer the heat load coming from the plasma to the cooling system and also provide tritium breeding for the fuel cycle of the machine. KIT has been investigating and developed a helium-cooled blanket for more than three decades: the concept is based on the adoption of separated small lithium orthosilicate (tritium breeder) and beryllium (neutron multiplier) pebble beds, i.e. the HCPB blanket. One of the test blanket modules of ITER will be a HCPB type, aiming to demonstrate the soundness of the concept for the exploitation in future fusion power plants. A discussion is reported also on the development of the design criteria for the blanket to meet the requirements, such as tritium environmental release, also with reference to the TBM.The selection of materials and components to be used in a unique environment as the Tokamak of a fusion reactor requires dedicated several R&D activities. For instance, the performance of the coolant and the tritium self-sufficiency are key elements for the realization of the HCPB concept. Experimental campaigns have been conducted to select the materials to be used inside the solid breeder blanket and R&D activities have been carried out to support the design. The paper discusses also the program of future developments for the realization of the HCPB concept, also focusing to the specific campaigns necessary to qualify the TBM for its implementation in the ITER machine.  相似文献   

18.
The effects of evaluated nuclear data files on neutronics characteristics of a fusion–fission hybrid reactor have been analyzed; three-dimensional calculations have been made using the MCNP4C Monte Carlo Code for ENDF/B-VII T = 300 K, JEFF-3.0 T = 300 K, and CENDL-2 T = 300 K evaluated nuclear data files. The nuclear parameters of a fusion–fission hybrid reactor such as tritium breeding ratio, energy multiplication factor, fissile fuel breeding and nuclear heating in a first wall, blanket and shield have been investigated for the mixture components of 90% Flibe (Li2BeF4) and 10% UF4 for a blanket layer thickness of 50 cm. The contributions of each isotope of Flibe (6Li, 7Li, 19F, 9Be) and UF4 (235U, 238U) to the integrated parameter values were calculated. The neutron wall load is assumed to be 10 MW/m2.  相似文献   

19.
The neutron multiplication parameters: neutron multiplication M, subcritical multiplication factor ks, external source efficiency φ*, play an important role for numerical assessment and reactor power evaluation of an accelerator-driven system (ADS). Those parameters can be evaluated by using the measured reaction rate distribution in the subcritical system. In this study, the experimental verification of this methodology is performed in various ADS cores; with high-energy (100 MeV) proton–tungsten source in hard and soft neutron spectra cores and 14 MeV D–T neutron source in soft spectrum core. The comparison between measured and calculated multiplication parameters reveals a maximum relative difference in the range of 6.6–13.7% that is attributed to the calculation nuclear libraries uncertainty and accuracy for energies higher than 20 MeV and also dependent on the reaction rate distribution position and count rates. The effects of different core neutron spectra and external neutron sources on the neutron multiplication parameters are discussed.  相似文献   

20.
Rossi-Alpha (βeff/Λ) for critical reactor measured experimentally by noise analysis technique at PARR-1 core at 35.26 full power days burn up. In noise analysis technique the inherent reactivity fluctuations are taken as input to reactor system and the neutron density population fluctuations are considered as output of the reactor system. The auto power spectral density of the linear channel is taken and used to find out the break frequency by non-linear least square fitting method, which leads to βeff/Λ = 161.45 s−1. Calculations were performed with the help of computer codes WIMSD/4 and CITATION. The calculated βeff/Λ = 161.07 s−1 at 35.26 full power days burn up. The measured and calculated values for Rossi-Alpha are in good agreement within 0.235% of error.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号