首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel and rapid microwave method was used to prepare TiO2 coated ZnO nanocomposite particles. The resulted particles were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HR-TEM) and X-ray photoelectron spectroscopy (XPS). Results show that ZnO nanoparticles were coated with 6-10 nm amorphous TiO2 layers. In addition, zeta potential analysis demonstrated the presence of TiO2 layer on the surface of ZnO nanoparticles. Photoluminescence (PL) spectroscopy and UV-visible spectroscopy were used to investigate the optical properties of the nanoparticles. Compared to uncoated ZnO nanoparticles, the TiO2 coated ZnO nanoparticles showed enhanced UV emission. The UV-visible diffuse reflectance study revealed the significant UV shielding characteristics of the nanocomposite particles. Moreover, amorphous TiO2 coating effectively reduced the photocatalytic activity of ZnO nanoparticles as evidenced by the photodegradation of Orange G with uncoated and TiO2 coated ZnO nanoparticles under UV radiation.  相似文献   

2.
《Materials Research Bulletin》2013,48(11):4576-4582
Nano-crystalline ZnO particles were synthesized using two different routes: soft-wet and dry methods. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to identify the particles structures and morphologies, while X-ray diffraction (XRD) was used for verifying the particles crystal structure. The thermal stabilities of the particles were examined through thermal gravimetric analysis technique and their surface areas were calculated using BET method. Moreover, the photocatalytic activities were evaluated using UV–vis spectroscopy and photoluminescence (PL) characterization. The results showed that all the prepared ZnO samples possess a hexagonal wurtzite structure with high purity. Different particle sizes and morphologies of spheres, rods and wires were obtained depending on the preparation method used. Particle sizes obtained by the dry method are smaller than that found by the wet chemical method. The effects of both particle size and morphology on each of surface as well as optical properties, photocatalytic activity, dye/ZnO solar cell efficiency and biological activity have been studied and discussed.  相似文献   

3.
A new and rapid method for silica coating of ZnO nanoparticles by the simple microwave irradiation technique is reported. Silica-coated ZnO nanoparticles were characterized by X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR), high-resolution transmission electron microscopy (HR-TEM), CHN elemental analysis and zeta potential measurements. The FT-IR spectra and XPS clearly confirmed the silica coating on ZnO nanoparticles. The results of XPS analysis showed that the elements in the coating at the surface of the ZnO nanoparticles were Zn, O and Si. HR-TEM micrographs revealed a continuous and uniform dense silica coating layer of about 3 nm in thickness on the surface of ZnO nanoparticles. In addition, the silica coating on the ZnO nanoparticles was confirmed by the agreement in the zeta potential of the silica-coated ZnO nanoparticles with that of SiO2. The results of the photocatalytic degradation of methylene blue (MB) in aqueous solution showed that silica coating effectively reduced the photocatalytic activity of ZnO nanoparticles. Silica-coated ZnO nanoparticles showed excellent UV shielding ability and visible light transparency.  相似文献   

4.
In this paper, we prepared the ZnO nanoparticles by a simple hydrothermal method and fabricated the ZnO/SiO2 core/shell nanostructures through a sol-gel chemistry process successfully. The hollow SiO2 nanostructures were obtained by selective removal of the ZnO cores. The structure, morphology and composition of the products were determined by the techniques of X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDS) and transmission electron microscopy (TEM). The results indicated that the ZnO nanoparticles were sphere-like shape with the average size of 60 nm and belonged to hexagonal wurtzite crystal structure. With the coating of SiO2, the vibration modes of Si-O-Si and Si-OH were found. Furthermore, the measurement results of optical properties showed that spectra of bare ZnO nanoparticles and ZnO/SiO2 core/shell nanocomposites exhibited similar emission features, including a blue emission peak and an orange emission band.  相似文献   

5.
A series of novel ZnO/polyimide composite films with different ZnO contents was prepared through incorporation hexagonal disklike ZnO particles into poly(amic acid) of the pre polymer of the polyimide. The hexagonal disklike ZnO particles with a diameter of 300-500 nm were synthesized from zinc acetate and NaOH in water with citric acid. The prepared zinc oxide-polyimide composites were characterized for their structure, morphology, and thermal behavior employing Fourier transform infrared spectroscopy, scanning electron micrograph, X-ray diffraction and thermal analysis techniques. Thermal analyses show that the ZnO particles were successfully incorporated into the polymer matrix and these ZnO/polymer composites have a good thermal stability. Scanning electron microscopy studies indicate the ZnO particles were uniformly dispersed in the polymer and they remained at the original size (300-500 nm) before immobilization. All composite films with ZnO particle contents from 1 to 5 wt% show good transparency in the visible region and luminescent properties.  相似文献   

6.
An efficient method for the preparation of N-F-codoped visible light active TiO2 nanorod arrays is reported. In the process, simultaneous nitrogen and fluorine doped TiO2 nanorod arrays on the glass substrates were achieved by liquid phase deposition method using ZnO nanorod arrays as templates with different calcination temperature. The as-prepared samples were characterized by Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and UV-vis absorption spectra measurements. It was found that calcination temperature is an important factor influencing the microstructure and the amount of N and F in TiO2 nanorod arrays samples. The visible light photocatalytic properties were investigated using methylene blue (MB) dye as a model system. The results showed that N-F-codoped TiO2 nanorod arrays sample calcined at 450 °C demonstrated the best visible light activity in all samples, much higher than that of TiO2 nanoparticles and P25 particles films.  相似文献   

7.
《Materials Research Bulletin》2013,48(11):4754-4758
La-doped ZnO nanoparticles have been successfully synthesized by a simple solution combustion method via employing a mixture of ethanol and ethyleneglycol (v/v = 60/40) as the solvent. Zinc acetate and oxygen gas in the atmosphere were used as zinc and oxygen sources, and La(NO3)3 as the doping reagent. The as-obtained product was characterized by means of powder X-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectrometry and X-ray photoelectron spectroscopy. Experiments showed that La-doped ZnO nanoparticles exhibited the higher capacities for the removal of Pb2+ and Cu2+ ions in water resource than undoped ZnO nanoparticles.  相似文献   

8.
Vanadium-doped ZnO nanoparticles (ZnO:V) were prepared via flame spray pyrolysis (FSP) from a mixed aqueous solution of zinc hydroxide and vanadyl (IV) acetylacetonate. The morphological, structural and optical properties of the ZnO:V photocatalyst were characterized via transmission electron microscopy (TEM), X-ray powder diffraction (XRD), and UV-visible diffused reflection spectrum (DRS). The photocatalytic activity of ZnO:V was evaluated via photocatalytic degradation of methylene blue (MB). The results showed that the hexagonal wurtzite-structured ZnO:V nanoparticles were successfully synthesized via FSP. The morphology of the as-prepared nanoparticles was polyhedral and non-hollow. The average diameter of ZnO:V, which was calculated from BET result, was 11.7 nm when the molar ratio of V/Zn was 0.1. The maximum decomposition of MB by the ZnO:V nanoparticles was 99.4% after 180 min under UV irradiation, whereas the decomposition of MB by the pure ZnO nanoparticles was 96.6%.  相似文献   

9.
Sheet-like ZnO with regular hexagon shape and uniform diameter has been successfully synthesized through a two-step method without any metal catalyst. First, the sheet-like ZnO precursor was synthesized in a weak alkaline carbamide environment with stirring in a constant temperature water-bath by the homogeneous precipitation method, then sheet-like ZnO was obtained by calcining at 600 °C for 2 h. The structures and optical properties of sheet-like ZnO have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), photoluminescence (PL) and UV-vis-NIR spectrophotometer. The results reveal that the product is highly crystalline with hexagonal wurtzite phase and has appearance of hexagon at (0 0 0 1) plane. The HRTEM images confirm that the individual sheet-like ZnO is single crystal. The PL spectrum exhibits a narrow ultraviolet emission at 397 nm and a broad visible emission centering at 502 nm. The band gap of sheet-like ZnO is about 3.15 eV.  相似文献   

10.
Flower-like Ag/ZnO heterostructure composites were prepared through a solvothermal method without surfactants or templates. The products were characterized by X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, and photoluminescence (PL) spectroscopy. Results demonstrate that flower-like Ag/ZnO heterostructure composites were composed of wurtzite ZnO flowers coated by face-center-cubic Ag nanoparticles. The growth process of flower-like ZnO crystals was investigated, and a possible growth mechanism was proposed. The photocatalytic activity of the as-prepared flower-like Ag/ZnO samples, pure ZnO samples, and commercial TiO2 (Degussa, P-25) was tested with the photocatalytic degradation of methylene blue. Results show that the Ag/ZnO heterostructures were superior in photocatalytic activity to the pure ZnO samples and the commercial TiO2 (Degussa, P-25), but the mixture of Ag (0.1 wt%) particles and ZnO flowers did not, which implies that the heterostructure promoted the separation of photogenerated electron–hole pairs, enhancing the photocatalytic activity. That was primarily verified by the PL results.  相似文献   

11.
Pure and Fe doped ZnO nanoparticles were prepared by a facile and cost-effective co-precipitation method. The X-ray diffractograms (XRD) reveal that the grown nanoparticles are hexagonal in structure and the crystallite sizes are in the range of 27–28 nm. The transmission electron microscope (TEM) micrographs confirmed the spherical nature of the grown particles and the Fourier transform-infrared (FT-IR) studies confirmed the presence of Zn–O bonding in the prepared nanoparticles. Additionally, the presence of the constituent elements is confirmed with XPS analysis. The optical bandgap of the prepared nanoparticles are calculated as 3.28, 3.19 and 3.08 eV for ZnO, ZnO–Fe 10 at.% and ZnO–Fe 20 at.%, respectively. The photocatalytic dye degradation efficiency against methylene blue, is 68.52, 73.96, and 87.92, respectively. To validate the photocatalytic activity, a DFT based calculation was performed to measure the band edge positions of the pure and Fe doped ZnO nanostructures, and the obtained results are well supported by the experimental results.  相似文献   

12.
Zinc oxide (ZnO) spherical nanoparticles (SNPs) and bitter-melon-like (BML) microparticles were synthesized by a hydrothermal route using a zinc (Zn) plate as a source and substrate at various synthesis conditions. The structural analysis confirmed the formation of ZnO with hexagonal wurtzite phase on the hexagonal Zn substrate with growth of the ZnO microparticles along the [1 0 1] direction. The UV-vis absorption spectra of the ZnO microparticles indicated absorption peaks in the UV region which can be attributed to the band gap of ZnO. The room temperature photoluminescence (PL) of the ZnO microparticles exhibited a broad emission band, which is fitted with four Gaussian peaks and were assigned to transitions involving free excitons and various defect centers. The growth model for the formation of ZnO micro- and nanoparticles is presented.  相似文献   

13.
Comparison of ZnO nanoparticles and its nano-crystalline particles on the photocatalytic degradation of methylene blue was investigated. ZnO nanoparticles and its nano-crystalline particles were synthesized from sprayed droplets of an aqueous zinc nitrate solution by flame spray pyrolysis and spray pyrolysis assisted with an electrical furnace, respectively. ZnO nanoparticles of 20 nm in average diameter and ZnO nano-crystalline particles of 20 nm in the grain size were prepared to compare the photocatalytic activity. The photocatalytic activity of those ZnO particles was evaluated by measuring the degradation of methylene blue in water under the illumination of ultraviolet rays. Effect of the particle morphology, initial concentration of methylene blue, and photocatalyst loading on the degradation of the methylene blue was investigated under the illumination of ultraviolet rays. The photocatalytic degradation capacity of the ZnO nanoparticles was higher than that of the ZnO nano-crystalline particles. The efficiency of photocatalytic degradation of methylene blue increased with increase in photocatalyst loading and decrease in initial concentration regardless of particle morphology.  相似文献   

14.
Ag/ZnO nanoparticles can be obtained via photocatalytic reduction of silver nitrate at ZnO nanorods when a solution of AgNO3 and nanorods ZnO suspended in ethyleneglycol is exposed to daylight. The mean size of the deposited sphere like Ag particles is about 5 nm. However, some of the particles can be as large as 20 nm. The ZnO nanorods were pre-prepared by basic precipitation from zinc acetate di-hydrate in the ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide. They are about 50–300 nm in length and 10–50 nm in width. Transmission electron microscopy (TEM), energy-dispersive X-ray analysis (EDS), X-ray powder diffraction (XRD), UV–Vis spectroscopy, X-ray photoelectron spectroscopy (XPS), and photoluminescence (PL) were used to characterize the resulting Ag/ZnO nanocomposites.  相似文献   

15.
M. Nirmala  A. Anukaliani 《Materials Letters》2011,65(17-18):2645-2648
Antibacterial activity of Transition metals (Mn, Co) doped ZnO nanopowders prepared by a DC thermal plasma method against Escherichia coli and Staphylococcus aureus are investigated. The phase and morphology studies have been carried out by X-ray diffraction, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) respectively. All the samples of the present investigation are found to have hexagonal wurtzite structure and crystallite sizes are found to vary from 25 nm to 30 nm. Our bacteriological study showed the enhanced antibacterial activity of transition metals doped ZnO nanoparticles than undoped ZnO indicating the great potential of ZnO nanoparticles in relevant clinical and biomedical applications.  相似文献   

16.
The authors report a controlled synthesis of biocompatible ZnO and acarbose‐capped nanohybrids, and examined the inhibition activities of these nanosystems with human salivary α ‐amylase (HSA) activity. XRD measurements reveal ZnO present in wurtzite phase with hexagonal structure. The average size of ZnO particles for the two studied nanosystems was estimated to lie between 10 to 12 nm using Scherrer equation. These particles depict the onset of absorption at about 320 nm and the band‐gap emission at about 370 nm, which are fairly blue shifted as compared with the bulk ZnO and have been understood due to the size quantisation effect. The inhibitory action of thioglycerol capped ZnO nanoparticles (SP1) and acarbose drug (used for diabetes type II) capped ZnO (SP2) for HSA was observed to 61 and72%, respectively. The inhibition activity of the SP1 alone was found to be very similar to that of acarbose and the coating of these particles with drug (SP2) demonstrated an enhancement in inhibition activity of the enzyme by about 30%. From the inhibition studies, it is confirmed that these nanosystems showed better inhibition activity at physiological temperature and pH. These nanosystems are projected to have potential applications in diabetes type II control.Inspec keywords: zinc compounds, II‐VI semiconductors, wide band gap semiconductors, nanoparticles, drugs, enzymes, molecular biophysics, nanomedicine, ultraviolet spectra, nanocomposites, nanofabrication, fluorescence, visible spectra, Fourier transform infrared spectra, atomic force microscopy, scanning electron microscopy, X‐ray diffraction, absorption coefficients, diseases, coatings, field emission electron microscopyOther keywords: acarbose‐capped nanohybrids, inhibitors, biocompatible zinc oxide nanoparticles, inhibition activity, human salivary α‐amylase activity, HSA activity, advanced analytical tools, ultraviolet‐visible spectra, fluorescence, Fourier transform infrared spectrophotometer, atomic force microscopy, field‐emission scanning electron microscopy, X‐ray diffraction, wurtzite phase, hexagonal structure, average size, Scherer equation, onset absorption, band‐gap emissions, size quantisation effect, thioglycerol capped nanoparticles, acarbose drug, enzyme, diabetes type II control, size 10 nm to 12 nm, ZnO  相似文献   

17.
Using zinc nitrate as a precursor and NaOH starch as a stabilizing agent, hexagonal zinc oxide (ZnO) nanoparticles has been synthesized by precipitation method. The transmission electron microscopy (TEM) images show particles of nearly uniform spherical size of around 40 nm. The infrared spectroscopy (FT-IR) measurement reveals the peak at 500 cm?1, corresponding to the Zn–O bond. Dielectric studies of ZnO nanoparticles show frequency dependence dielectric anomaly at low temperature (85–300 K). Results reveal that the capacitance and loss tangent decrease with the frequency while these parameters improve with the increasing of temperature. The increase of a.c. conductivity with the temperature indicates that the mobility of charge carriers is responsible for hopping and electronic polarization in ZnO nanoparticles.  相似文献   

18.
Mg-doped ZnO nanoparticles were successfully synthesized by sonochemical method. The products were characterized by scan electron microscopy (SEM) and X-ray powder diffraction (XRD). SEM images revealed that ZnO doped with Mg(II) nanoparticles and ZnO nanoparticles synthesized by the same strategy all had spherical topography. XRD patterns showed that the doped nanoparticles had the same crystals structures as the pure ZnO nanoparticles. The Mg-doped ZnO nanoparticles had larger lattice volume than the un-doped nanoparticles. X-ray photoelectron spectroscopy (XPS) not only demonstrated the moral ratio of Mg and Zn element on the surface of nanoparticles, but their valence in nanoparticles as well. The Mg-doped ZnO nanoparticles presented good properties in photocatalyst compared with pure ZnO nanoparticles.  相似文献   

19.
ZnO/Ag composite nanospheres with an average diameter of about 440 nm, were synthesized through a facile one-pot solvothermal reaction, using a kind of biomolecular sodium alginate as template, H2O and diethanolamine as solvents, followed by the assembly of ZnO and Ag nanoparticles in-situly produced. The composite spheres were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and energy disperse X-ray spectrum. Moreover, the results showed that the as-made ZnO/Ag assembled nanospheres exhibited better photocatalytic performance than the pure ZnO nanoparticles and this one-pot synthesis method has great potential to be extended for the synthesis of other metallic oxide/metal spheres.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号