首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 665 毫秒
1.
多孔碳超级电容器具有比电容高和循坏寿命长等优点,是当前研究和应用最广泛的一类超级电容器材料。综述了多孔碳材料的不同制备方法和多样化的多孔碳材料前驱体,并介绍了掺杂石墨烯、过渡金属氧化物(TMDs)、过渡金属碳化物或氮化物(MXene)及杂原子等手段来改善碳基电极的离子传输能力,对其在电容器中的应用进行了总结。  相似文献   

2.
超级电容器电极用N-掺杂多孔碳材料的研究进展   总被引:1,自引:1,他引:0  
冯晨辰  吴爱民  黄昊 《材料导报》2016,30(1):143-149
多孔碳材料作为双电层电容器的主要电极材料,已成功应用于商业化超级电容器。但作为电极材料,纯碳材料表面疏水、内阻较大、电容较低等缺点使其进一步发展受到制约。近年来,随着超级电容器的迅速发展,氮掺杂多孔碳材料作为其电极材料引起研究人员的广泛关注,并采用不同的制备方法成功合成了一系列结构不同、性能优异的氮掺杂碳材料。基于超级电容器氮掺杂多孔碳电极材料的最新研究进展,首先介绍了氮在碳材料中的基本存在形式及对碳电极材料性能的影响,然后重点评述了氮掺杂碳电极材料的制备,最后总结了超级电容器氮掺杂碳材料的发展趋势。  相似文献   

3.
采用SU-8光刻胶为前驱体,控制转速在硅基上均匀旋涂SU-8胶薄膜,采用不同碳化温度制得微型微机电系统(MEMS)超级电容器多孔碳电极材料。研究结果表明:在碳化温度为900℃的条件下,制得的MEMS超级电容器多孔碳电极材料的孔隙结构发达、导电性较好,0.5mA/cm~2电流密度下比电容可达49.3mF/cm~2,在超级电容器电极材料领域具有较好的市场前景。  相似文献   

4.
由于制备方法简单并且原料易得, 多孔碳合成广泛采用生物质材料, 并用于能源存储。以天然生物质棉花作为碳源, 通过简单的一步法制备得到氮掺杂多孔碳材料。这种多孔碳材料在碳化温度为750℃时具有480 m2/g的比表面积和6.84%的高含氮量。当用作超级电容器电极材料时, 这种碳材料显示出了良好的电容性能。在1 mol/L硫酸电解液中, 电流密度为1 mol/L时, 比电容可以达到252 F/g, 并且在循环10000圈之后仍能保留94%的原电容。这种低成本的棉花基碳材料为超级电容器应用提供了可能。  相似文献   

5.
肖国庆  勾黎敏  丁冬海 《材料导报》2018,32(19):3309-3317
碳电极是超级电容器的关键材料,在很大程度上决定了超级电容器的性能,其发展趋势是高比表面积、高堆积密度、高中孔率、高电导率、高纯度和高性价比以及良好的电解液浸润性(即"六高一良好")。目前,活性碳纤维、碳凝胶、碳纳米管、模板碳等各种碳材料作为超级电容器电极材料的研究均有报道,但较低的比电容和相对较低的体积密度限制了它们在高能量需求的超级电容器电极方面的实际应用。为解决上述问题,关于具有高比表面积的多孔碳材料的研究逐渐活跃起来,特别是一些免活化的制备方法如共混聚合物裂解法、微乳液模板溶胶-凝胶聚合法及模板法等。然而,共聚混合物的制备、超临界干燥、模板的去除等使以上免活化制备方法较传统方法更为复杂。用聚偏二氯乙烯(PVDC)作为前驱体制备多孔碳可实现脱氯-活化一步完成。PVDC基碳作为超级电容器电极材料的优势在于:(1)来源广、成本低;(2)PVDC高碳密度的长链构型可促进芳香环化,与小分子相比,其所需碳化能量低,制备多孔碳材料无需额外活化过程;(3)以PVDC为碳前驱体比以其他材料为前驱体制备的多孔碳材料具有较高的比电容,目前PVDC基碳电极的比电容可达400F·g~(-1)。然而,高性能超级电容器的碳电极材料既要有高比表面积,又要有与电解液离子尺寸相适应的孔径,二者彼此制约。因此,目前研究的重点是在更微观层面上实现碳材料微观结构的调控与优化。目前,超级电容器用PVDC基碳电极的制备方法可分为脱氯-活化多步法与脱氯-活法一步法。脱氯-活化多步法是将PVDC直接机械研磨或高温热解,接着在不同活化作用后得到多孔碳材料的方法。此法得到的多孔碳具有较高的比表面积,但制备过程复杂。模板法不需要额外活化作用,但仍需两步才可得到多孔结构,获得的多孔碳材料虽然具有比表面积大、孔体积大及分级孔径分布的优点,但比电容相对较低。PVDC结构特殊,在高温热解或机械研磨过程中加入强碱,可实现脱氯-活化一步完成,得到PVDC基多孔碳材料,该法工序简单,脱氯率较高,且不会破坏PVDC的固有结构。此外,PVDC连接在亚乙烯基上的氯元素活性高,与含N-/O-聚合物中的N-/O-相比更易离开基团,可在较低温度实现脱氯碳化,且脱氯后的空位对杂质原子较敏感,易实现掺杂。本文分别从PVDC脱氯-活化多步碳化、脱氯-活化一步碳化及氮掺杂三方面综述了超级电容器用PVDC基碳电极的孔结构、比表面积及电化学性能方面的研究进展,并对超级电容器用PVDC基碳电极的研究进行了展望。  相似文献   

6.
生物质多孔碳是一种绿色、廉价、来源广泛、理化性质易于调控的可再生能源,在能源与环境修复等领域具有广泛的应用潜力和前景。主要介绍了目前常用于制备生物质多孔碳材料的主要方法、活化方法以及掺杂方法。在此基础上,综述了生物质多孔碳材料在多相催化、超级电容器、吸附、电极材料以及微波吸收等方面的研究进展,并对未来的发展趋势进展了总结和展望。  相似文献   

7.
超级电容器是一种介于传统静电容器和化学电池之间的新型储能元件,具有功率密度大、充放电速度快、使用寿命长、绿色环保等特点。而作为超级电容器重要的组成部分——电极材料,对超级电容器的电化学性能和市场应用起到重要的影响和制约。近年来,以碳气凝胶、碳纳米管、碳纤维和石墨烯等为代表的新型碳材料,成为超级电容器电极材料的研究热点,有望成为新一代电极材料。对近年来国内外关于新型碳材料的应用与发展进行了综述,并且展望了新型碳材料在超级电容器储能技术中亟需解决的问题和未来发展趋势,为构建能源互联网提供理论依据和技术支持。  相似文献   

8.
为提高多孔碳球作为超级电容器电极材料在电解液中的离子迁移速率,通过水热法设计制备了以碳球为外壳,金纳米颗粒为核心的核壳结构复合材料(CS-Au)。之后通过KOH活化,制备的样品(PCS-Au)比表面积可达到962.48m2/g。结果表明:在0.5A/g的电流密度下,PCS-Au表现出225F/g的比容量,相较于纯多孔碳球(PCS)比容量提高了28.5%。使用螺旋季铵四氟硼酸盐和乙腈混合溶液(CF4301)作为电解液,组装成纽扣式对称型超级电容器后,PCS-Au在功率密度为1000W/kg的情况下能量密度为27.63Wh/kg。并且在1A/g电流密度下,经过20000圈循环稳定性测试后容量保持率为104.76%,性能无衰减,展现出很好的循环稳定性。精心设计的核壳结构与较大的比表面积,优异的导电性及丰富的孔结构降低了材料电阻并可以容纳更多的电解液,导致Au纳米颗粒@多孔碳球是一种极具应用价值的超级电容器电极材料。  相似文献   

9.
二维过渡金属碳/氮化物(MXene)具有类石墨烯的结构,微观上呈现片层状和多种表面基团,因此具有良好的导电性、离子传输和高亲水性能,并且成为超级电容器的理想电极材料。但MXene层与层容易坍塌、堆叠与官能团的存在,不利于作为电极材料的性能。通过热处理、离子插层和与碳复合等方法提高其电化学性能拥有巨大的应用前景。首先总结了MXene材料的制备方法,然后概述了表面改性和结构优化等对MXene超级电容器的电化学性能的影响,展望了MXene材料在超级电容器上的研究前景。  相似文献   

10.
超级电容器具有充放电速度快、能量密度高、循环稳定性好等优点,而电极材料决定超级电容器的电化学性能。可再生生物质经过高温炭化可制备不同微观结构的碳材料,然而,这些碳材料存在比容量低的缺点;MnO2具有高理论比电容,缺点是循环稳定差。生物质衍生碳与MnO2复合可以实现两者优势互补。首先介绍了生物质衍生碳/MnO2复合材料的制备方法,包括化学法、水热法和电沉积法。然后,按照不同生物质衍生碳的微观结构进行分类,综述了多孔碳/MnO2、碳球/MnO2、碳纤维管/MnO2、碳纳米片/MnO2和三维碳/MnO2复合材料的制备及在超级电容器中的应用性能。最后,总结了综合性能最优的生物质衍生碳/MnO2复合材料,并针对该领域存在的问题提出了其未来发展方向。  相似文献   

11.
氧还原反应缓慢的动力学过程严重限制了燃料电池的能量转换效率, 而商用Pt/C催化剂成本太高、资源稀缺、稳定性差, 需要寻找合适的材料来取代商用的Pt/C催化剂。近年来, 氮掺杂多孔碳材料因其独特的物理和化学特性吸引了大量的关注。本文使用富含氮元素的可再生土豆作为生物质前驱体, 通过简单的一步热解过程和KOH活化方法相结合制备出了一系列氮掺杂多孔碳电催化剂; 并系统研究了KOH用量和活化温度对碳基体孔结构和电催化性能的影响。结果表明, 当活化温度为750 ℃、KOH与碳的质量比为3/1时, 所制备的催化剂(NPC-750)的氧还原活性最高, 起始电位和半波电位分别达到0.89和0.79 V (vs. RHE), 极限电流密度达到5.53 mA?cm -2。NPC-750优异的氧还原催化活性主要归因于其发达的孔结构、高的比表面积(1134.2 m 2?g -1)和合适的氮含量(1.57at%)。同时, 优异的循环稳定性和抗甲醇中毒性能进一步说明这些生物多孔碳材料是潜在的低成本氧还原电催化剂。此外, 这些高比表面积多孔碳在超级电容、吸附/分离、催化以及电池等领域也具有潜在的应用前景。  相似文献   

12.
The preparation of activated carbons from bean pods waste by chemical (K(2)CO(3)) and physical (water vapor) activation was investigated. The carbon prepared by chemical activation presented a more developed porous structure (surface area 1580 m(2) g(-1) and pore volume 0.809 cm(3) g(-1)) than the one obtained by water vapor activation (258 m(2) g(-1) and 0.206 cm(3) g(-1)). These carbons were explored as adsorbents for the adsorption of naphthalene from water solutions at low concentration and room temperature and their properties are compared with those of commercial activated carbons. Naphthalene adsorption on the carbons obtained from agricultural waste was stronger than that of carbon adsorbents reported in the literature. This seems to be due to the presence of large amounts of basic groups on the bean-pod-based carbons. The adsorption capacity evaluated from Freundlich equation was found to depend on both the textural and chemical properties of the carbons. Naphthalene uptake on biomass-derived carbons was 300 and 85 mg g(-1) for the carbon prepared by chemical and physical activation, respectively. Moreover, when the uptake is normalized per unit area of adsorbent, the least porous carbon displays enhanced naphthalene removal. The results suggest an important role of the carbon composition including mineral matter in naphthalene retention. This issue remains under investigation.  相似文献   

13.
Carbon materials have attracted intense interests as electrode materials for electrochemical capacitors, because of their high surface area, electrical conductivity, chemical stability and low cost. Activated carbons produced by different activation processes from various precursors are the most widely used electrodes. Recently, with the rapid growth of nanotechnology, nanostructured electrode materials, such as carbon nanotubes and template-synthesized porous carbons have been developed. Their unique electrical properties and well controlled pore sizes and structures facilitate fast ion and electron transportation. In order to further improve the power and energy densities of the capacitors, carbon-based composites combining electrical double layer capacitors (EDLC)-capacitance and pseudo-capacitance have been explored. They show not only enhanced capacitance, but as well good cyclability. In this review, recent progresses on carbon-based electrode materials are summarized, including activated carbons, carbon nanotubes, and template-synthesized porous carbons, in particular mesoporous carbons. Their advantages and disadvantages as electrochemical capacitors are discussed. At the end of this review, the future trends of electrochemical capacitors with high energy and power are proposed.  相似文献   

14.
The growth of white‐rot fungi is related to the superior infiltrability and biodegradability of hyphae on a lignocellulosic substrate. The superior biodegradability of fungi toward plant substrates affords tailored microstructures, which benefits subsequently high efficient carbonization and chemical activation. Here, the mechanism underlying the direct growth of mushrooms toward the lignocellulosic substrate is elucidated and a fungi‐enabled method for the preparation of porous carbons with ultrahigh specific surface area (3439 m2 g?1) is developed. Such porous carbons could have potential applications in energy storage, environment treatment, and electrocatalysis. The present study reveals a novel pore formation mechanism in root‐colonizing fungi and anticipates a valuable function for fungi in developing the useful porous carbons with a high specific surface area.  相似文献   

15.
Porous carbons     
Satish M. Manocha 《Sadhana》2003,28(1-2):335-348
Carbon in dense as well as porous solid form is used in a variety of applications. Activated porous carbons are made through pyrolysis and activation of carbonaceous natural as well as synthetic precursors. Pyrolysed woods replicate the structure of original wood but as such possess very low surface areas and poor adsorption capacities. On activation, these exhibit increased adsorption volumes of 0.5-0.8 cm3/gm and surface areas of 700–1800 m2/gm depending on activation conditions, whether physical or chemical. Former carbons possess mixed pore size distribution while chemically activated carbons predominantly possess micropores. Thus, these carbons can be used for adsorption of wide distributions of molecules from gas to liquid. The molecular adsorption within the pores is due to single layer or multilayer molecule deposition at the pore walls and hence results in different types of adsorption isotherm. On the other hand, activated carbon fibres with controlled microporous structure and surface area in the range of 2500 m2/gm can be developed by controlled pyrolysis and physical activation of amorphous carbon fibres. Active carbon fibres with unmatchable pore structure and surface characteristics are present and futuristic porous materials for a number of applications from pollution control to energy storage.  相似文献   

16.
The porous structure and electrochemical double layer capacitance of porous carbons prepared from rice husks by using alkali hydroxide as activating agents were investigated. Three samples of carbons prepared by NaOH-activation, three samples prepared by KOH-activation and two samples of commercial carbons have been studied. The porosity of the carbons was characterized by nitrogen adsorption isotherms at 77 K and electrochemical constant current cycling method was used to measure the double layer capacitance. The specific capacitance of the carbons is not linearly proportional to the surface area. Additionally, the double layer capacitance strongly depends on the pore structure and the functional groups. A specific capacitance larger than 200 F g−1 was achieved by using the porous carbon prepared with NaOH (activation temperature: 750 °C; activation time: 30 min). All the carbons prepared with rice husk in this study have larger double layer capacitance (125–210 F g−1) than the commercial grade carbons (78–100 F g−1).  相似文献   

17.
In this review, the progress made in the last ten years concerning the synthesis of porous carbon materials is summarized. Porous carbon materials with various pore sizes and pore structures have been synthesized using several different routes. Microporous activated carbons have been synthesized through the activation process. Ordered microporous carbon materials have been synthesized using zeolites as templates. Mesoporous carbons with a disordered pore structure have been synthesized using various methods, including catalytic activation using metal species, carbonization of polymer/polymer blends, carbonization of organic aerogels, and template synthesis using silica nanoparticles. Ordered mesoporous carbons with various pore structures have been synthesized using mesoporous silica materials such as MCM‐48, HMS, SBA‐15, MCF, and MSU‐X as templates. Ordered mesoporous carbons with graphitic pore walls have been synthesized using soft‐carbon sources that can be converted to highly ordered graphite at high temperature. Hierarchically ordered mesoporous carbon materials have been synthesized using various designed silica templates. Some of these mesoporous carbon materials have successfully been used as adsorbents for bulky pollutants, as electrodes for supercapacitors and fuel cells, and as hosts for enzyme immobilization. Ordered macroporous carbon materials have been synthesized using colloidal crystals as templates. One‐dimensional carbon nanostructured materials have been fabricated using anodic aluminum oxide (AAO) as a template.  相似文献   

18.
Porous carbon materials were prepared by hydrothermal carbonization(HTC) and KOH activation of camphor leaves and camellia leaves. The morphology, pore structure, chemical properties and CO_2 capture ability of the porous carbon prepared from the two leaves were compared. The effect of HTC temperature on the structure and CO_2 adsorption properties was especially investigated. It was found that HTC temperature had a major effect on the structure of the product and the ability to capture CO_2. The porous carbon materials prepared from camellia leaves at the HTC temperature of 240℃ had the highest proportion of microporous structure, the largest specific surface area(up to 1823.77 m~2/g) and the maximum CO_2 adsorption capacity of 8.30 mmol/g at 25℃ under 0.4 MPa. For all prepared porous carbons, simulation results of isothermal adsorption model showed that Langmuir isotherm model described the adsorption equilibrium data better than Freundlich isotherm model. For porous carbons prepared from camphor leaves, pseudo-first order kinetic model was well fitted with the experimental data. However,for porous carbons prepared from camellia leaves, both pseudo-first and pseudo-second order kinetics model adsorption behaviors were present. The porous carbon materials prepared from tree leaves provided a feasible option for CO_2 capture with low cost, environmental friendship and high capture capability.  相似文献   

19.
采用N2吸附、CO2吸附和热重红外联用等技术手段, 考察了在KOH活化稻壳炭的过程中碱炭比和活化温度对活性炭极微孔的影响。结果表明: 在不同碱炭比(0.6︰1~3︰1)和活化温度(640~780℃)下制备的稻壳活性炭, 极微孔主要分布在0.42~0.70 nm。当碱炭比增加时, 极微孔孔容先增大后减小; 而当活化温度升高时, 极微孔孔容呈降低趋势。极微孔率随碱炭比或活化温度的升高而单调递减。在活化温度为640℃、碱炭比为1: 1时, 可得极微孔孔容为0.149 mL/g、极微孔率达36.3%的微孔活性炭。活性炭的极微孔孔容与其在104 Pa时的CO2吸附量高度线性相关。  相似文献   

20.
Recent progress in syntheses of porous carbons with designed pore architecture has rejuvenated the field of carbon chemistry and promises to provide new advanced materials. In order to reap the full benefit of designer carbons, it is necessary to develop chemistries for functionalizing the porous carbon surfaces. This Review examines methods of functionalizing porous carbon through direct incorporation of heteroatoms in the carbon synthesis, surface oxidation and activation, halogenation, sulfonation, grafting, attachment of nanoparticles and surface coating with polymers. Methods of characterizing the functionalized carbon materials and applications that benefit from functionalized nanoporous carbons with designed architecture are also highlighted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号