首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT

Microparticles containing heparin were prepared by a water-in-oil-in-water emulsification and evaporation process with pure or blends of biodegradable (poly-?-caprolactone and poly(d,l-lactic-co-glycolic acid)) and of positively-charged non-biodegradable (Eudragit® RS and RL) polymers. The influence of polymers and some excipients (gelatin A and B, NaCl) on the particle size, the morphology, the heparin encapsulation rate as well as the in vitro drug release was investigated. The diameter of the microparticles prepared with the various polymers ranged from 80 to 130 µm and was found to increase significantly with the addition of gelatin A into the internal aqueous phase. Microparticles prepared with Eudragit RS and RL exhibited higher drug entrapment efficiency (49 and 80% respectively), but lower drug release within 24 h (17 and 3.5% respectively) than those prepared with PCL and PLAGA. The use of blends of two polymers in the organic phase was found to modify the drug entrapment as well as the heparin release kinetics compared with microparticles prepared with a single polymer. In addition, microparticles prepared with gelatin A showed higher entrapment efficiency, but a significant initial burst effect was observed during the heparin release. The in vitro biological activity of heparin released from the formulations affording a suitable drug release has been tested by measuring the anti-Xa activity by a colorimetric assay with a chromogenic substrate. The results confirmed that heparin remained unaltered after the entrapment process.  相似文献   

2.
Gliclazide (GLZ)-loaded microparticles made with a polymeric blend were prepared by a solvent evaporation technique. Organic solutions of two polymers, poly(?-caprolactone) (PCL) and Eudragit RS (E RS) or ethyl cellulose (EC), in different weight ratios, and 33.3% of GLZ were prepared and dropped into aqueous solution of poly vinyl alcohol, in different experimental conditions, achieving drug-loaded microparticles. The obtained microparticles were characterized in terms of yield of production, shape, size, surface properties, drug content, and in vitro drug release behavior. The physical state of the drugs and the polymer was determined by scanning electron microscopy (SEM), Fourier transform infra red and differential scanning calorimetry. Following the in vitro release studies microparticles made from blends of polymer, PCL/E RS or EC showed slower drug release than microparticles made from single PCL polymer. Surface morphology also revealed presence of porous and spherical structure of microparticles. Microparticles showing sustained release of GLZ were examined in rabbits and plasma GLZ concentrations were calculated using HPLC method of assay.  相似文献   

3.
Permeable acrylic resins were used as efficient retarding materials to prepare controlled release salbutamol sulphate molded tablets. The formulation is simple, efficient, economic and is easily shaped into molded tablets. The effects of two types of acrylic resins, namely: Eudragit RL100 ad Eudragit RS100 in concentrations 1, 2 and 5% w/w on the physical characteristics as well as on the in vitro release patterns of salbutamol sulphate from molded tablets prepared with either polyethylene glycol (PEG) 4000 or 6000 were studied. It was revealed that, as the molecular weight of the PEG increased, the hardness of the tablets increased. Considerable retardation in the drug release was observed by using Eudragit RS100 as compared to Eudragit RL100. The formulation prepared with PEG 6000 and 5% Eudragit RS100 produced much more release time prolongation than the other tested formulations. On the other hand, tablets prepared by the direct compression technique produced a faster release of salbutamol sulphate than those prepared by molding.  相似文献   

4.
Abstract

Permeable acrylic resins were used as efficient retarding materials to prepare controlled release salbutamol sulphate molded tablets. The formulation is simple, efficient, economic and is easily shaped into molded tablets. The effects of two types of acrylic resins, namely: Eudragit RL100 ad Eudragit RS100 in concentrations 1, 2 and 5% w/w on the physical characteristics as well as on the in vitro release patterns of salbutamol sulphate from molded tablets prepared with either polyethylene glycol (PEG) 4000 or 6000 were studied. It was revealed that, as the molecular weight of the PEG increased, the hardness of the tablets increased. Considerable retardation in the drug release was observed by using Eudragit RS100 as compared to Eudragit RL100. The formulation prepared with PEG 6000 and 5% Eudragit RS100 produced much more release time prolongation than the other tested formulations. On the other hand, tablets prepared by the direct compression technique produced a faster release of salbutamol sulphate than those prepared by molding.  相似文献   

5.
ABSTRACT

The aim of the present work was to investigate the preparation of low molecular weight heparin (LMWH) nanoparticles (NP) as potential oral heparin carriers. The NP were formulated using an ultrasound probe by water-in-oil-in-water (w/o/w) emulsification and solvent evaporation with two biodegradable polymers [poly-ε-caprolactone, PCL and poly(d,l-lactic-co-glycolic acid) 50/50, PLGA] and two non-biodegradable positively charged polymers (Eudragit RS and RL) used alone or in combination. The mean diameter of LMWH-loaded NP ranged from 240 to 490 nm and was dependent on the reduced viscosity of the polymeric organic solution. The surface potential of LMWH NP prepared with Eudragit polymers used alone or blended with PCL and PLGA was changed dramatically from strong positive values obtained with unloaded NP to negative values. The highest encapsulation efficiencies were observed when Eudragit polymers took part in the composition of the polymeric matrix, compared with PCL and PLGA NP exhibiting low LMWH entrapment. The in vitro LMWH release in phosphate buffer from all formulations ranged from 10 to 25% and was more important (two- to threefold) when esterase was added into the dissolution medium. The in vitro biological activity of released LMWH, determined by the anti-factor Xa activity with a chromogenic substrate, was preserved after the encapsulation process, making these NP good candidates for oral administration.  相似文献   

6.
In this study, it was aimed to prepare prolonged action microcapsules of acetaminophen with short biological half-life by a non-solvent addition method which is one of the conservation-phase separation techniques.

For this purpose, the three different particle size ranges of acetaminophen (0.088-0.177 mn, 0.250-0.354 mn, 0.420-0.500 mn) were used. The solution of polyisobuthylene in cyclohexane as a non-solvent and Eudragit RS and Eudragit RL as coating polymers were also used. The prepared mi crosapsules were compressed by a hydraulic press using different types of direct tableting agents such as Ludipress, Avicel PH 101 and Lactose EP D 30. Dissolution rates of each tablet containing 160 mg of microencapsulated acetaminophen were examined by continuous flow-through cell method

The results of this study showed that the release rate of drug from microcapsules prepared with Eudragit RS was lower than that of microcapsules prepared with Eudragit RL. However different particle size ranges of drug didn't affect significantly the release rate; but different types of direct tableting agents were effective on the release rate of drug.  相似文献   

7.
The objective of this study was to develop doxofylline-loaded sustained-release pellets coated with Eudragit NE30D alone (F1) or blend of Eudragit RL30D/RS30D (F2) and further evaluate their in vitro release and in vivo absorption in beagle dogs. Doxofylline-loaded cores with a drug loading of 70% (w/w) were prepared by layering drug-MCC powder onto seed cores in a centrifugal granulator and then coating them with different kinds of polymethacrylates in a bottom-spray fluidized bed coater. Dissolution behaviour of these formulations was studied in vitro under various pH conditions (from pH 1.2 to pH 7.4) to evaluate the effect of pH on drug release profiles. It was found that F2 produced a better release profile than F1 did and two different release mechanisms were assumed for F1 and F2, respectively. The relative bioavailability of the sustained-release pellets was studied in six beagle dogs after oral administration in a fast state using a commercially available immediate release tablet as a reference. Coated with Eudragit NE30D and a blend of Eudragit RL30D/RS30D (1:12), at 5% and 8% coating level, respectively, the pellets acquired perfect sustained-release properties and good relative bioavailability, with small fluctuation of drug concentration in plasma. But combined use of mixed Eudragit RL30D/RS30D polymers with proper features as coating materials produced a longer T(max), a lower C(max) and a little higher bioavailability compared to F1 (coated with Eudragit NE30D alone). The C(max), T(max) and relative bioavailability of F1 and F2 coated pellets were 15.16 microg/ml, 4.17 h, 97.69% and 11.41 microg/ml, 5 h, 101.59%, respectively. Also a good linear correlation between in vivo absorption and in vitro release was established for F1 and F2, so from the dissolution test, formulations in vivo absorption can be properly predicted.  相似文献   

8.
The objective of this study is to explore matrix-type microparticles, comprising a solid dispersion of drug with an ammonio methacrylate copolymer and ethylcellulose binary blend, for use in the controlled release of a poorly water-soluble drug, nifedipine. Microparticles consisting of an ethylcellulose N7 (N7) and Eudragit RL® (RL) binary blend at different ratios were prepared using phase-separation methodology. The effects of matrix composition on microparticle properties were evaluated by polarized light microscopy, differential scanning calorimetry (DSC), FT-infrared and UV-visible spectroscopy, stability, and drug release studies. Study results indicate that the particle size distribution, particle morphology, and drug release rate from the microparticles were influenced by the ratio of RL to N7. Discrete spherical microparticles with a narrow size distribution and a controlled release profile were obtained when the ratio of RL to N7 was in the range from 1:1 to 2:1 w/w. Solid-state characterization and release kinetic studies on these microparticles confirmed that the nifedipine release from the microparticles followed the Baker and Lonsdale's matrix diffusion model (1974) for microspheres containing dissolved drug, and the nifedipine diffusion in the microparticle matrix was the rate-limiting step. As the ratio of RL to N7 was changed from 0:1 to 4:1 w/w, the effective drug diffusion coefficient in the micro-matrix increased from 5.8 × 10-10 to 8.6 × 10-9 (cm2/h). In addition, probably due to formation of a stable molecular dispersion promoted by hydrogen bonding between nifedipine and the polymers, no significant changes in the nifedipine physical form or release kinetics were observed after 1-year storage at ambient room temperature followed by 3-month accelerated stability at 40°C/75% RH in a closed container.  相似文献   

9.
Abstract

Co-precipitates of pheniramine aminosalicylate in different types of Eudragit were prepared. IR spectra indicated the absence of molecular interaction between the drug and Eudragit. The effect of polymer type on the retardation of drug release rate was in the following order: Eudragit S 100> Eudragit L 100> Eudragit RSPM or Eudragit RS 100> Eudragit RLPM or Eudragit RL 100. The concentration of the polymer in the system was a determining factor in controlling the release rate of the drug. As the concentration of the polymer in the system increased, the release rate of the drug decreased.

Co-precipitates of the drug in different ratios of Eudragit blends were also prepared. The release rate of the drug decreased by decreasing the concentration of the permeable Eudragit RLPM or Eudragit RSPM in the system.

The rapid release rate of the drug from the physical mixtures excluded their application in controlling drug release.  相似文献   

10.
Abstract

The need for controlled release (CR) formulations of ibuprofen tablet, is well recognized. Some such formulations have been marketed but in general only patented.

The purpose of this study was to develop an air suspension method, using a laboratory scale fluidized bed drier to coat the ibuprofen granules. Different polymers including, Eudragits L100, S100, RL100, RS100, L100+S100 (1:1), RL100+RS100 (1:1), ethyl cellulose (EC) and Eudragit RS100+EC (1:1) were utilized. The drug release medium consisted of buffer pH 1.2 for 1st 2h, buffer pH 4.5 for 2nd 2h and buffer pH 7.5 for remaining period of time in all experiments, but the release behaviour of the drug from some formulations was also studied using distilled water. Of the polymers investigated, Eudragit RS100, EC, Eudragit S100 and Eudragit RS100+EC (1:1) exhibited proper release characteristics when used as coating materials. The release patterns were analyzed from the standpoint of diffusion-controlled processes and as first-order kinetics.  相似文献   

11.
ABSTRACT

The objective of this study is to explore matrix-type microparticles, comprising a solid dispersion of drug with an ammonio methacrylate copolymer and ethylcellulose binary blend, for use in the controlled release of a poorly water-soluble drug, nifedipine. Microparticles consisting of an ethylcellulose N7 (N7) and Eudragit RL® (RL) binary blend at different ratios were prepared using phase-separation methodology. The effects of matrix composition on microparticle properties were evaluated by polarized light microscopy, differential scanning calorimetry (DSC), FT-infrared and UV-visible spectroscopy, stability, and drug release studies. Study results indicate that the particle size distribution, particle morphology, and drug release rate from the microparticles were influenced by the ratio of RL to N7. Discrete spherical microparticles with a narrow size distribution and a controlled release profile were obtained when the ratio of RL to N7 was in the range from 1:1 to 2:1 w/w. Solid-state characterization and release kinetic studies on these microparticles confirmed that the nifedipine release from the microparticles followed the Baker and Lonsdale's matrix diffusion model (1974) for microspheres containing dissolved drug, and the nifedipine diffusion in the microparticle matrix was the rate-limiting step. As the ratio of RL to N7 was changed from 0:1 to 4:1 w/w, the effective drug diffusion coefficient in the micro-matrix increased from 5.8?×?10?10 to 8.6?×?10?9 (cm2/h). In addition, probably due to formation of a stable molecular dispersion promoted by hydrogen bonding between nifedipine and the polymers, no significant changes in the nifedipine physical form or release kinetics were observed after 1-year storage at ambient room temperature followed by 3-month accelerated stability at 40°C/75% RH in a closed container.  相似文献   

12.
The aim of the present work was to investigate the preparation of low molecular weight heparin (LMWH) nanoparticles (NP) as potential oral heparin carriers. The NP were formulated using an ultrasound probe by water-in-oil-in-water (w/o/w) emulsification and solvent evaporation with two biodegradable polymers [poly-epsilon-caprolactone, PCL and poly(D,L-lactic-co-glycolic acid) 50/50, PLGA] and two non-biodegradable positively charged polymers (Eudragit RS and RL) used alone or in combination. The mean diameter of LMWH-loaded NP ranged from 240 to 490 nm and was dependent on the reduced viscosity of the polymeric organic solution. The surface potential of LMWH NP prepared with Eudragit polymers used alone or blended with PCL and PLGA was changed dramatically from strong positive values obtained with unloaded NP to negative values. The highest encapsulation efficiencies were observed when Eudragit polymers took part in the composition of the polymeric matrix, compared with PCL and PLGA NP exhibiting low LMWH entrapment. The in vitro LMWH release in phosphate buffer from all formulations ranged from 10 to 25% and was more important (two- to threefold) when esterase was added into the dissolution medium. The in vitro biological activity of released LMWH, determined by the anti-factor Xa activity with a chromogenic substrate, was preserved after the encapsulation process, making these NP good candidates for oral administration.  相似文献   

13.
The need for controlled release (CR) formulations of ibuprofen tablet, is well recognized. Some such formulations have been marketed but in general only patented.

The purpose of this study was to develop an air suspension method, using a laboratory scale fluidized bed drier to coat the ibuprofen granules. Different polymers including, Eudragits L100, S100, RL100, RS100, L100+S100 (1:1), RL100+RS100 (1:1), ethyl cellulose (EC) and Eudragit RS100+EC (1:1) were utilized. The drug release medium consisted of buffer pH 1.2 for 1st 2h, buffer pH 4.5 for 2nd 2h and buffer pH 7.5 for remaining period of time in all experiments, but the release behaviour of the drug from some formulations was also studied using distilled water. Of the polymers investigated, Eudragit RS100, EC, Eudragit S100 and Eudragit RS100+EC (1:1) exhibited proper release characteristics when used as coating materials. The release patterns were analyzed from the standpoint of diffusion-controlled processes and as first-order kinetics.  相似文献   

14.
Different series of Diltiazem pellets with slow release of the active substance were prepared, by pan coating technique, using different mixtures of acrylic polymers (Eudragit E, Eudragit L, Eudragit RL and Eudragit RS) as film coating agents. The thickness of the coatings were varied by different amounts of Eudragit. Release profiles of Diltiazem hydrochloride were investigated using USP XX rotating basket method (Erweka DT-D6) with 1000 ml buffer solution (pH values 1.5; 2.2; 5.5; 6.8; 7.0) at 37°C as solvent. In vitro dissolution findings showed that Eudragit coatings gave prolonged release of Diltiazem hydrochloride. The permeability of coatings in gastric and intenstinal juices was found to be influenced by the amount of Eudragit L in the formulation. Also, the drug release rate was found to be dependent on the amount of coating applied. In order to understand the drug release mechanism better, the release data were tested assuming common kinetic models. In the present study square - root of the time plots and Weibull plots were not sufficiently linear, although several correlation coefficients were high. When the goodness of fit of release data to first - order kinetics and Hixson - Crowell 's equation was evaluated, the difference between these two models was often noted to be minimal.  相似文献   

15.
Abstract

Aqueous acrylic polymer dispersions were blended in order to improve processing and film formation from acrylic polymers with poor film forming properties and/or to obtain sustained-release film coated pellets with optimal barrier properties according to the physicochemical and pharmacokinetic requirements of the active substance.

Heterogeneous film structures are generally obtained from blends containing an association of hard acrylic polymers (Eudragit* RS30D, S100) with the soft Eudragit* NE30D when the drying temperature is lower than the minimum film forming temperature (MFT) of the hard acrylic polymers. The Tg and MFT values of the hard acrylic polymers are not modified in the presence of the soft polymer as shown by the thermograms of these blends which are generally characterized by two individual glassy transitions.

On the other hand, a wide range of drug dissolution profiles can be obtained from film coated pellets either by using, in different proportions, the insoluble but readily permeable Eudragit* RL30D in association with the less permeable Eudragit* RS30D in order to obtain pH-independent permeability membrane, or by mixing the anionic methacrylic acid copolymers (L30D, S100) with the neutral NE30D in order to obtain pH-dependent permeability film coated pellets showing higher dissolution release rates at intestinal pH values.  相似文献   

16.
This work embodies studies, performed with micropellet type dosage forms of Pentazocine Hydrochloride (Pz-HCl), using single and composite matrices of Eudragit RS100 (RS) and RL100 (RL). The effects of formulation parameters on various dosage form criteria - namely drug loading, particle size distribution, release profiles etc. have been investigated. Results indicate, that the two polymers can be successfully combined to produce different changes in release kinetics, with simple modifications of coating composition and initial drug loads.  相似文献   

17.
Eudragit RL and RS pseudolatices were prepared by the solvent change technique, which consisted of dissolving the polymer in a water miscible organic solvent or in a mixed water miscible organic solvent system, followed by dispersian in deionized water under mild agitation. The organic solvent (s) was removed from the aqueous organic solution to leave a stable Eudragit latex.

Eudragit pseudolatex coated theophylline pellets were prepared in a fluidized-bed coating machine. The effects of polymer type and coating level, plasticizer concentration, and PH of the dissolution medium on drug release were investigated. The higher content of quaternary ammonium groups attached to the polymer backbone make the coatings produced from Eudragit RL too water sensitive; and hence unsuitable for controlling theophylline release. On the other hand, Eudragit RS films retarded theophylline release. On the other hand, Eudragit RS films retarded theophylline release over a wide pH range. Release of the drug was found to be a function of the polymer coating level, plasticizer concentration and dependent on pH of the dissolution medium.  相似文献   

18.
Microspheres containing indomethacin were prepared with various combinations of polymers Eudragit RS and Eudragit L. The effects of different ratios of polymers, solvent-polymer ratio, polymer-drug ratio and evaporation temperature on the physical characteristics of the microspheres as well as the in vitro release rate of the drug were investigated. All the factors studied had an influence on the physical characteristics of the microspheres. In vitro dissolution results showed that all formulations gave prolonged release of indomethacin and the release followed apparent zero order kinetics until 80% of drug had been released.  相似文献   

19.
Controlled-release furosemide microspheres were prepared with various combinations of Eudragit L: Eudragit RS and Eudragit S: Eudragit RS and release of drug from microspheres containing these polymers in different ratios was studied. A wide range of release rates of drug can obtained by a simple change in the ratio of polymers. An increase in Eudragit RS content of polymer microsphere matrix brought about a decrease in the release rate.

On the other hand, the effect of particle size on the drug release rate from furosemide microspheres was also investigated. The effect of microsphere sizes on release rate depends on the type of Eudragit. The decrease in release rates of small microspheres may be due to agglomerate formation. Dissolution data indicated that the release followed Higuchi's matrix model kinetics.  相似文献   

20.
Abstract

Different series of Diltiazem pellets with slow release of the active substance were prepared, by pan coating technique, using different mixtures of acrylic polymers (Eudragit E, Eudragit L, Eudragit RL and Eudragit RS) as film coating agents. The thickness of the coatings were varied by different amounts of Eudragit. Release profiles of Diltiazem hydrochloride were investigated using USP XX rotating basket method (Erweka DT-D6) with 1000 ml buffer solution (pH values 1.5; 2.2; 5.5; 6.8; 7.0) at 37°C as solvent. In vitro dissolution findings showed that Eudragit coatings gave prolonged release of Diltiazem hydrochloride. The permeability of coatings in gastric and intenstinal juices was found to be influenced by the amount of Eudragit L in the formulation. Also, the drug release rate was found to be dependent on the amount of coating applied. In order to understand the drug release mechanism better, the release data were tested assuming common kinetic models. In the present study square - root of the time plots and Weibull plots were not sufficiently linear, although several correlation coefficients were high. When the goodness of fit of release data to first - order kinetics and Hixson - Crowell ‘s equation was evaluated, the difference between these two models was often noted to be minimal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号