首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
崩滑堰塞湖是山区一种常见的地质灾害,溃决后可能造成下游人民生命财产的巨大损失。围绕崩滑堰塞湖的形成-孕灾-致灾过程,对其灾害链的形成机理和模拟方法进行了分析研究。以崩滑堰塞湖的形成过程和堰塞体的颗粒分布特征为切入点,建立了堰塞体稳定性快速评价方法,总结了堰塞体的冲蚀特性和溃决过程,提出了崩滑堰塞湖溃决过程数值模拟方法。该灾害链模拟方法基于崩滑堰塞湖的形成和溃决机理,综合考虑了堰塞体的形态特征、颗粒组成、材料冲蚀特性和堰塞湖的水动力条件,可对堰塞体的稳定性、堰塞湖的溃决洪水流量过程和溃口演化规律进行分析计算,是一种科学高效的模拟方法。选择21世纪我国3个典型的崩滑堰塞湖案例验证了灾害链模拟方法的合理性,可为风险评估提供参考。  相似文献   

2.
堰塞坝冲刷溃决及溃决洪水演进过程十分复杂,其溃决洪水对下游人民生命财产构成巨大威胁。利用数值分析方法对大型滑坡堰塞坝的溃决演进过程进行模拟和重演,对堰塞湖下游的避险与防灾减灾具有重要指导意义。以2018年金沙江"10·11"白格滑坡堰塞湖为例,基于无人机获取的地形数据,建立白格滑坡堰塞坝的三维数值模型,采用Flow-3D软件对堰塞坝的自然泄流冲刷溃决过程进行模拟,分析泄流槽内的流速、冲淤变化特征以及下游溃口处的洪峰流量演变过程。模拟结果表明:堰塞坝漫顶冲刷可以划分为溃决冲刷前、溃口快速拓展阶段、洪峰时刻、溃口稳定发展阶段4个时间段;溃决泄流过程中,泄流槽斜坡道上的水流流速较大,冲刷深度最大,堰塞坝下游出现明显淤积;白格堰塞湖溃决过程中出现了明显的溯源侵蚀现象,在泄流槽不断下切的过程中,泄流槽跌坎不断向上游移动。模拟结果有助于进一步深化对金沙江"10·11"白格滑坡堰塞坝冲刷溃决过程和机理的认识,对于堰塞湖应急处置措施和科学避险方案的制定具有一定的参考价值。  相似文献   

3.
基于多座溃决堰塞坝案例的调查,对堰塞坝的形成机制、溃决风险及其影响因素进行分析总结,认为堰塞坝主要是由地震或降雨或火山喷发引起的山体滑坡、崩塌、泥石流所形成,形成方式可概括为滑坡、崩塌、泥石流以及碎屑流,其中滑坡是形成堰塞坝最主要的形式。堰塞坝的工作条件、坝体几何特征以及坝体物质组成和内部结构都与人工土石坝存在明显差别,其溃决的可能性远高于人工土石坝。指出堰塞坝的溃决风险主要取决于上游来水量、坝的拦蓄水量、坝的几何尺寸和坝的结构与物质组成,并讨论了降低堰塞坝溃决风险的应对措施。鉴于堰塞坝极高的溃决可能性与严重的致灾后果,建议今后加强堰塞坝溃决机理、溃坝过程的试验与数值模拟研究工作,提出能合理反映堰塞坝溃口发展规律、溃坝洪水流量过程的数值模型与相应计算方法,为科学预测堰塞坝溃决致灾后果,制定堰塞坝溃决应急预案提供技术支撑。  相似文献   

4.
浙江遂昌县苏村山体崩塌形成堰塞湖,应用堰塞湖风险静态评估模型得到的风险评估成果,难以完全满足多任务、多阶段处置需求。通过研究堰塞湖"外因→(堰塞坝?滞库洪水)→损失"的致灾机理,提出了基于堰塞湖可能灾害损失、堰塞坝与滞库洪水双致灾因子、持续时间的堰塞湖风险动态评估模型,将致溃洪水、堰塞坝、灾害损失作为堰塞湖风险评估的主因素,实现了按时间序列对堰塞湖风险度进行全面评估,其评估成果更加符合客观实际,对堰塞湖抢险处置决策更具指导意义。采用堰塞湖风险动态评估模型对苏村堰塞湖进行风险评估,其成果为该堰塞湖抢险处置决策提供了科学依据。  相似文献   

5.
堰塞坝发生溃决破坏会严重威胁下游人民的安全。为降低其对下游的威胁,文章以黑西洛沟滑坡-泥石流-堰塞湖灾害为例,通过Flow-3D软件对坝体溃决过程进行模拟,得到流速特征及溃口冲淤情况。结果表明:泄流过程中,溃口逐步扩展,坝体下游出现侵蚀破坏,随后溃口向上游发展;泄流槽末端最大流速达到17.5m/s,溃口迅速下切,冲刷深度达25.7m。坝体下游出现淤积,淤积高度达8.4m。溃决过程中,跌坎不断向上移动,发生溯源侵蚀。研究成果有助于深入分析黑西洛堰塞坝溃决过程及机理,为今后处置堰塞体提供支持。  相似文献   

6.
四川、西藏交界处的金沙江右岸白格村所在岸坡于2018年10月10日和11月3日发生两次失稳滑坡,堵塞金沙江形成堰塞湖。在介绍堰塞湖形成过程及成因的基础上,分析了堰塞体结构及形态特征、溃决发展阶段、溃决特征值,并将这些特征参数与以往一些堰塞湖作了比较。分析表明:该堰塞体总体由细颗粒组成,表面及下游侧粗颗粒增加,抗冲性差、库容、来水量及堰塞体物质组成是决定溃决峰值流量的关键因素,来水量、堰塞体抗冲性及堰塞体溃流段长度是决定坝体溃决时长的关键因素。  相似文献   

7.
《人民黄河》2015,(5):38-41
考虑堰塞湖上游洪峰流量对堰塞坝溃决过程的影响,以4种不同上游洪峰流量为变量进行8组水槽试验,观测溃坝过程和溃口的变化,总结堰塞坝漫顶溃决的4个阶段,即漫顶下渗阶段、大通道形成阶段、大通道快速冲刷阶段和稳定阶段。结果表明:最大溃口流量随上游洪峰流量的增大呈对数型增长趋势,上游洪峰流量的增大对溃坝过程影响明显,具体表现为上游洪峰流量越大,快速冲刷时间越短,溃口发展和二次垮塌的平均速率和规模越大,且溃口洪水过程由单一的水位涨落变为持续性高水位过程。  相似文献   

8.
杨连伟 《人民长江》2023,(1):119-125+176
峡谷区高位滑坡发生后堵塞河道,往往造成巨大的损失。2018年10月11日及11月3日,金沙江白格滑坡两次堵塞金沙江,形成的堰塞湖淹没了上游村镇,堰塞坝溃决后洪水冲击下游造成了巨大损失。为研究白格滑坡首次失稳破坏的机理及其关键影响因素,依据现场调查建立了失稳前边坡的二维模型,并结合地质过程进行了数值模拟计算。结果表明:白格滑坡是深切河谷斜坡岩体在长期卸荷和表生时效作用下产生的岩质滑坡;斜坡破坏时主应力在软硬岩接触面附近发生应力集中,致使下部硬岩剪出口位移超过4 m最终失稳破坏;对滑坡区工程地质条件、岩体卸荷及表生改造作用等因素的分析认为,“10·11”白格滑坡是随时间推移、多种因素叠加,量变转化为质变形成的。  相似文献   

9.
堰塞坝溃决及防范   总被引:1,自引:0,他引:1  
由暴雨、地震等引起的山体滑坡或泥石流堵塞山区河道形成堰塞湖和堰塞坝.所壅起的水量会淹没上游地区,且堰塞坝一旦溃决,所产生的洪峰将淹没下游地区.尽管阻止滑坡和堰塞坝的形成十分困难,但若有必要的信息资料可资利用的话,即可对溃坝及由此引发的洪水危害做出预测.  相似文献   

10.
为了提出适用于堰塞湖溃决模拟仿真的方法,在系统梳理FREAD溃坝洪水分析体系DWOPER、DAMBRK、BREACH和FLDWAV模型的基础上,对各模型的基本原理、适用条件及优缺点进行了汇总。基于各模型的功能特点,联合使用BREACH溃坝计算模型及FLDWAV洪水演进模型反演了尼泊尔逊克西(Sunkoshi)堰塞坝的溃决过程。结果表明:逊克西堰塞坝溃决过程历时68 min达到溃决洪峰流量1 794 m3/s,考虑到支流入流的情况,溃决洪峰历时154 min演进至下游37.9 km处的库帕瓦加特(Pachuwarghat)水文站,计算流量结果与该水文站实测数据较为一致,从而验证了联合使用BREACH和FLDWAV模型进行堰塞湖溃决计算的合理性和可行性。研究成果可以为制定类似堰塞湖溃决的应急处置方案提供参考。  相似文献   

11.
滑坡堰塞坝主要形成于高山峡谷地区,在我国川西南地区尤为常见.掌握其形成过程和堆积特点有助于准确分析堰塞坝溃决风险、科学制定应急抢险措施,从而最大限度地降低灾害造成的生命财产损失.本文通过开展滑坡堵江室内物理模型试验,研究了堰塞坝的形成过程及坝体物质结构特点.试验采用不同物理性质的天然团聚土料作为堰塞体物源,记录了其在模拟滑槽中滑动、碰撞、解体、破碎及堵江堆积的全过程.同时,结合筛分试验和堰塞坝横断面图像分析,研究了坝体颗粒大小和空间分布特征.另外,分析了天然团聚土基本力学参数指标与堰塞坝体物质分布特征的关系,将坝体分为细粒区和粗粒区,并对其溃坝特征做出预测分析.  相似文献   

12.
为给堰塞湖水文应急预报、水文应急分析计算及堰塞体的处置提供支撑,在总结历次堰塞湖应急监测实践经验基础上,从调查内容、监测方法、资料分析与整理及技术装备等方面提出了堰塞湖水文应急监测方案架构。结合最新的水文应急监测技术,针对堰塞体上游、堰塞体、堰塞体下游分别制定了监测内容和监测技术方法,并成功地在金沙江11·3白格堰塞湖应急监测中得到应用,首次监测到堰塞湖溃决完整的水文过程,验证了技术路线的科学性,可为高危型堰塞湖水文应急监测提供借鉴与参考。  相似文献   

13.
泥石流堰塞坝是泥石流堵塞河道而形成的一种天然坝。泥石流堰塞坝在形成过程、坝体物质结构与组成、坝体物质侵蚀速率、溃决过程以及洪水峰值流量等方面与滑坡堰塞坝存在诸多差异性。因此,开展泥石流堰塞坝的形成与溃决机理研究具有重要意义。依次从泥石流堰塞坝的特点、堵河判据和坝体溃决过程与机理等方面,对近年来泥石流堰塞坝方面的研究进展进行了比较系统的阐述与总结;指出了当前研究中存在的问题与不足,并提出了泥石流堰塞坝形成与溃决方面需要进一步研究与解决的关键科学问题。  相似文献   

14.
强降雨产生的沟内汇流是破坏山区堵沟型滑坡堰塞坝的主要原因。如何实现堵沟型滑坡堰塞坝的监测和快速预警仍然是滑坡灾害防治研究的重点和难点,针对这一问题,提出了一种基于气象水文监测技术的小流域内堵沟型滑坡堰塞坝的应急监测预警方法。该法利用雨量计、水位计和流速仪等气象水文监测设备以及无线传输网络数据传输技术可同时对沟内汇流过程,以及降雨过程进行实时监测。此外,基于监测断面的累积径流总量与堰塞坝最大库容量之间的关系,构建了5级堰塞坝危险预警级别及对应的判别指标。以都江堰银洞子沟滑坡堰塞坝为对象,进行实地监测试验。结果显示:2017年8月28日银洞子沟流域出现特大暴雨,最大小时雨强达50mm/h,危险等级为Ⅳ级(最危险等级);在低处溃口处,当溃口处库容超过3000m3时,将淹没溃口顶部,出现溃决;在流量峰顶前的3h,库容达到了最大库容的1/3,监测系统发出了第一次预警;当雨强超过50mm/h后,监测系统发出红色预警信号,下游村庄立即组织疏散,并封闭流动路径上公路,因此未造成人员伤亡和重大财产损失。实践表明,该方法能够提前3h预警堰塞坝破坏,同时由于该方法系统架构简便,监测预警设备的安装调试需求时间比较少,能够达到快速预警的目的。  相似文献   

15.
青川县某沟域内老滑坡在5·12汶川地震中变形明显,滑坡体局部可能失稳堵沟,并在暴雨作用下溃决危害沟口的居民安置区。因此,分析预测该沟滑坡失稳-堵沟-溃决对青川县灾后重建工作具有重要的指导意义,对天然堰塞坝体的形成及溃决分析认识也具有一定的理论意义。通过对滑坡的稳定性分析评价,判定其具有再次堵沟的可能性,并采用土体抗剪强度理论计算堰塞坝体溃决危险性,计算结果表明堰塞坝体大规模溃决可能性较小,破坏模式为越顶洪水逐渐冲蚀。  相似文献   

16.
合理预测堰塞体的溃决过程对于致灾后果评价和防灾减灾工作的开展具有至关重要的意义,但由于堰塞体结构和材料的复杂性,给预测工作带来了挑战。基于堰塞体的地质勘察资料和溃决机理,建立了一个可考虑材料冲蚀特性随深度变化的堰塞体漫顶溃决过程数学模型。模型主要包括水动力模块、材料冲蚀模块和溃口发展模块,并采用按时间步长迭代的数值计算方法模拟堰塞体溃决时的水土耦合过程。选择拥有实测资料的白格“11·03”堰塞体溃决案例对模型进行验证,模拟结果验证了模型的合理性。参数敏感性分析结果表明,堰塞体材料冲蚀系数对溃口流量过程具有重要影响,堰塞体材料临界剪应力对溃决过程影响较小;另外,开挖泄流槽可大幅降低库容较大堰塞湖溃决时的溃口峰值流量,是一种行之有效的减灾手段。  相似文献   

17.
准确分析预测堰塞湖溃坝洪峰流量可为应急处置方案的制定和应急决策提供技术支撑。采用基于双曲线模型的冲刷侵蚀溃坝洪水分析方法,结合"10·11"和"11·03"白格堰塞湖溃坝洪水分析预测与应急抢险实践,对"10·11"白格堰塞湖自动漫顶溢流过程、"11·03"白格堰塞湖开挖人工导流槽和不开挖人工导流槽溃坝洪水过程进行了分析计算,并与应急除险过程中的实测资料进行对比。结果表明,数值计算结果与实测数据基本一致。这说明冲刷侵蚀模型的溃坝洪水分析方法可较好地分析预测堰塞坝溃决过程,白格堰塞坝溃决洪水分析预测时冲刷侵蚀率取a=1. 1,b=0. 000 5是合适的。此研究成果可供类似土石坝、堰塞坝风险分析和处理类似堰塞湖提供一定参考。  相似文献   

18.
堰塞坝溃决洪水对下游影响区域的人民生命财产、基础设施以及生态环境构成严重威胁,提高堰塞坝溃决参数及其寿命预测的准确度是应急处置的迫切需求。本文对全球1957组堰塞坝案例分别进行地理、统计学分析,在得到溃决参数主要影响因素的基础上,选取数据库中拥有完整信息的48组案例,利用非线性回归方法分别建立了洪峰流量、破坏深度、溃口顶宽、溃口底宽和溃决时长的预测模型,其均具有较高的拟合程度。之后分析了堰塞坝溃决参数的敏感性,结果显示坝高对溃决过程有显著影响。此外,基于19组寿命信息充分的案例,使用不同自变量和算法分别建立了蓄水阶段持续时间、溢流阶段持续时间的预测模型,并采用加权融合法提出了相应的融合模型。该成果可为量化评估堰塞坝溃决过程参数和寿命预测提供参考。  相似文献   

19.
我国是地震多发区,地震形成的堰塞坝一旦溃决,对下游城市和保护区将产生严重影响。由于堰塞坝溃决的复杂性和不可重复性,因此单一的数值模拟和物理模型试验均无法全面展现其变化特征。而三维视景模拟可在虚拟环境中精确地提供堰塞坝溃决及洪水演进的动态演变过程,具有显著的优势。本文重点阐述了堰塞坝溃决洪水三维视景模拟的基本原理和关键技术,基于堰塞坝溃决洪水计算模型和三维视景仿真技术之间的耦合,对堰塞坝溃决洪水进行三维分析和仿真,实现堰塞坝溃决洪水的三维视景模拟仿真与应用。相比传统的一维或者二维水动力学计算和展示,三维视景模拟更为准确和直观,它为堰塞坝溃决洪水问题的深入研究提供了一条行之有效的途径,可为提前制订应对方案和降低堰塞坝溃决所带来的损失提供参考依据。  相似文献   

20.
<正>2018年10月11日凌晨1至2时,金沙江右岸波罗乡白格滑坡体群发生高位剧烈滑坡,致金沙江截断,形成堰塞湖。20多天后,灾害再次降临白格。11月3日下午5时左右,白格滑坡再次发生滑塌,超过200万m~3岩土体滑入金沙江河道填充原有龙口,造成第二次堰塞。新增堰塞顺江长度273 m、横河向长度195 m,堰塞体体积达到1 000万m~3,超出第一次堰塞体高度约36 m,满库库容达到7.7亿m~3。较"10·11"白格堰塞湖增加5亿多m~3,严重威胁  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号